Skip to main content
Log in

Electrical and Magnetic Studies of Maghemite (γ-Fe2O3) Prepared by the Sol–Gel Route

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Maghemite (γ-Fe2O3) nanopowder was prepared by the sol–gel method. The microstructural and morphological properties of the prepared sample were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrical investigation was performed by impedance spectroscopy and the temperature/magnetic field dependence of magnetization was investigated using a magnetometer. The characterization results confirmed that the reflection peaks indexed by XRD correspond to the γ-Fe2O3 material with a crystallite size of 8 nm. The nanoparticles of the sample we prepared present a spherical shape and small size with high porosity. The electrical conductivity is in good agreement with Jonscher's law. Consequently, the displacement of charge carriers corresponds to the pattern of correlated barrier jumps over the dispersive region generated by interstitial defects and vacancies. The Nyquist diagram shows the presence of grains and grain boundary effects on the electrical transport in the structure of our material. The dielectric behavior was correlated with the polarization effect and a small dielectric loss. The saturation magnetization shows a high value for our sample, corresponding to 57 emu/g at room temperature (300 K) and 65 emu/g at a temperature of 5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Yoonus, R. Resmi, B. Beena, Evaluation of antibacterial and anticancer activity of green synthesized iron oxide (α-Fe2O3) nanoparticles. Mater. Today. Proc. (2021).

  2. W.I. Liu, J. Alsarraf, A. Shahsavar, M. Rostamzadeh, M. Afrand, and T.K. Nguyen, Impact of oscillating magnetic field on the thermal-conductivity of water-Fe3O4 and water-Fe3O4/CNT ferro-fluids: Experimental study. J. Magn. Magn. Mater. 484, 258 (2019).

    Article  CAS  Google Scholar 

  3. P. Fu, T. Yao, P. Wang, Q. Yang, Y. Ni, X. Guo, and C. Li, Efficient non-fullerene organic solar cells with low-temperature solution-processing ferrous oxides as hole transport layer. Org. Electron. 93, 106139 (2021).

    Article  CAS  Google Scholar 

  4. N. Zahmouli, M. Hjiri, S.G. Leonardi, L. El Mir, G. Neri, D. Iannazzo, and M.S. Aida, High performance Gd-doped γ-Fe2O3 based acetone sensor. Mater. Sci. Semicond. Process. 116, 105154 (2020).

    Article  CAS  Google Scholar 

  5. D. Feng, J. He, L. Zheng, W. Jiang, C. Zhang, L. Li, and W. Yao, Enhanced catalytic performance with Fe@ α-Fe2O3 thin nanosheets by synergistic effect of photocatalysis and Fenton-like process. J. Phys. Chem. Solids 150, 109886 (2021).

    Article  CAS  Google Scholar 

  6. S. Li, R. Zhang, D. Wang, L. Feng, and K. Cui, Synthesis of hollow maghemite (γ-Fe2O3) particles for magnetic field and pH-responsive drug delivery and lung cancer treatment. Ceram. Int. 47, 7457–7464 (2021).

    Article  CAS  Google Scholar 

  7. F. Xiao, R. Guo, X. He, H. Chen, W. Fang, W. Li, and L. Zhao, Enhanced photocurrent by MOFs layer on Ti-doped α-Fe2O3 for PEC water oxidation. Int. J. Hydrogen Energy 46, 7954–7963 (2021).

    Article  CAS  Google Scholar 

  8. V. Haridas, A. Sukhananazerin, B. Pullithadathil, and B.N. Narayanan, Ultrahigh specific capacitance of α-Fe2O3 nanorods-incorporated defect-free graphene nanolayers. Energy 221, 119743 (2021).

    Article  CAS  Google Scholar 

  9. L. Shi, B. Zhang, Q. Liao, L. Zhu, L. Zhao, D. Zhang, and D. Guo, Piezoelectric properties of Fe2O3 doped BiYbO3-Pb (Zr, Ti)O3 high curie temperature ceramics. Ceram. Int. 40, 11485 (2014).

    Article  CAS  Google Scholar 

  10. T. Sano, and Y. Tamaura, Synthesis of (Li, Mn) ferrites by reaction of ultrafine γ-Fe2O3 with LiMn2O4 spinel at 650°C. Mater. Res. Bull. 34, 389–401 (1999).

    Article  CAS  Google Scholar 

  11. Y. Ge, C. Li, G.I. Waterhouse, X. Jiang, Z. Zhang, and L. Yu, Polypyrrole/γ-Fe2O3/g-C3N4 nanocomposites for high-performance electromagnetic wave absorption. Synth. Met. 274, 116716 (2021).

    Article  CAS  Google Scholar 

  12. M. Benamara, E. Gómez, R. Dhahri, and A. Serrà, Enhanced photocatalytic removal of cyanotoxins by Al-Doped ZnO Nanoparticles with Visible-LED Irradiation. Toxins 13, 66–82 (2021).

    Article  CAS  Google Scholar 

  13. S. Jaballah, M. Benamara, H. Dahman, A. Ly, D. Lahem, M. Debliquy, and L. EL Mir, Effect of Mg-doping ZnO nanoparticles on detection of low ethanol concentrations. Mater. Chem. Phys. 255, 123643 (2020).

    Article  CAS  Google Scholar 

  14. S. Jaballah, M. Benamara, H. Dahman, D. Lahem, M. Debliquy, and L. El Mir, Formaldehyde sensing characteristics of calcium-doped zinc oxide nanoparticles-based gas sensor. J. Mater. Sci. Mater. Electron. 31, 8230 (2020).

    Article  CAS  Google Scholar 

  15. A. Bembibre, M. Benamara, M. Hjiri, E. Gómez, H.R. Alamri, R. Dhahri, and A. Serrà, Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles. Chem. Eng. J. 427, 132006 (2021).

    Article  Google Scholar 

  16. H. Fan, R. Wang, Z. Xu, H. Duan, and D. Chen, Structural and transport properties of FeO-TiO2-SiO2 systems: insights from molecular dynamics simulations. J. Non-Cryst. Solids 571, 121049 (2021).

    Article  CAS  Google Scholar 

  17. S. Ananthi, M. Kavitha, E. Ranjith Kumar, A. Balamurugan, Y. Al-Douri, H.K. Alzahrani, A.A. Keshk, T.M. Habeebullah, S.H. Abdel-Hafez, and N.M. El-Metwaly, Natural tannic acid (green tea) mediated synthesis of ethanol sensor based Fe3O4 nanoparticles: Investigation of structural, morphological, optical properties and colloidal stability for gas sensor application. Sens. Actuators: B. Chem. 352, 131071 (2022).

    Article  CAS  Google Scholar 

  18. N. Zahmouli, M. Hjiri, L. El Mir, A. Bonavita, N. Donato, G. Neri, and S.G. Leonardi, High performance acetone sensor based on γ-Fe2O3/Al–ZnO nanocomposites. Nanotechnology 30, 055502 (2019).

    Article  CAS  Google Scholar 

  19. M. Benamara, J. Massoudi, H. Dahman, E. Dhahri, L. El Mir, A. Ly, and D. Lahem, High response to sub-ppm level of NO2 with 50% RH of ZnO sensor obtained by an auto-combustion method. J. Mater. Sci. Mater. Electron. 31, 14249 (2020).

    Article  CAS  Google Scholar 

  20. A. Ghosh, Ac conduction in iron bismuthate glassy semiconductors. Phys. Rev. B 42, 1388 (1990).

    Article  CAS  Google Scholar 

  21. M. Benamara, J. Massoudi, H. Dahman, A. Ly, E. Dhahri, M. Debliquy, L. El Mir, and D. Lahem, Study of room temperature NO2 sensing performances of ZnO1−x (x = 0, 0.05, 0.10). App. Phys. A 128, 1 (2021).

    Google Scholar 

  22. M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, and A. Jemni, Structural and complex impedance spectroscopic studies of Ni0.5Mg0.3Cu0.2 Fe2O4 ferrite nanoparticle. Appl. Phys. A 123, 1 (2017).

    Article  CAS  Google Scholar 

  23. M. Idrees, M. Nadeem, and M.M. Hassan, Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy. J. Phys. D Appl. Phys. 43, 155401 (2010).

    Article  Google Scholar 

  24. W.H. Mulder, J.H. Sluyters, T. Pajkossy, and I. Nyikos, Tafel current at fractal electrodes: connection with admittance spectra. J. Electroanal. Chem. 285, 103 (1990).

    Article  CAS  Google Scholar 

  25. C.A. Schiller, and W. Strunz, The evaluation of experimental dielectric data of barrier coatings by means of different models. Electrochim. Acta 46, 3619 (2001).

    Article  CAS  Google Scholar 

  26. M. Benamara, S.S. Teixeira, M.P.F. Graça, M.A. Valente, S.K. Jakka, H. Dahman, E. Dhahri, M. Debliquy, and D. Lahem, Study of ZnO room temperature NO2 sensor under illumination prepared by auto-combustion. App. Phys. A 127, 1–15 (2021).

    Article  Google Scholar 

  27. C.R. Mariappan, G. Govindaraj, S.V. Rathan, and G.V. Prakash, Preparation, characterization, ac conductivity and permittivity studies on vitreous M4AlCdP3O12 (M = Li, Na, K) system. Mater. Sci. Eng. B 121, 8 (2005).

    Google Scholar 

  28. M. Knobel, W.C. Nunes, H. Winnischofer, T.C.R. Rocha, L.M. Socolovsky, C.L. Mayorga, and D. Zanchet, Effects of magnetic interparticle coupling on the blocking temperature of ferromagnetic nanoparticle arrays. J. Non-Crystalline Solids 353, 743–747 (2007).

    Article  CAS  Google Scholar 

  29. T.P. Raming, A.J.A. Winnubst, C.M. van Kats, and A.P. Phillips, The synthesis and magnetic properties of nanosized hematite (α-Fe2O3) particles. J. Colloid Interface Sci. 249, 346–350 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the FEDER funds through the COMPETE 2020 Program and the National Funds through FCT–Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Benamara or S. Soreto Teixeira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamara, M., Zahmouli, N., Teixeira, S.S. et al. Electrical and Magnetic Studies of Maghemite (γ-Fe2O3) Prepared by the Sol–Gel Route. J. Electron. Mater. 51, 2698–2707 (2022). https://doi.org/10.1007/s11664-022-09539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09539-1

Keywords

Navigation