Skip to main content
Log in

Crystal Structure, Magnetic, Dielectric and Ferromagnetic Resonance Properties of Pr-Zn‐Zr Co-Doped Yttrium Iron Garnet

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The regulation of magnetic and dielectric properties for yttrium iron garnet ferrites by ion doping is highly desirable in microwave devices. In this work, yttrium iron garnet ferrites co-doped with Pr-Zn-Zr atoms with the chemical formula PrxY3-xZn0.1Zr0.1Fe4.8O12 (x = 0, 0.1, 0.15, and 0.2) were prepared. The dependence of the crystal structure, microstructure, magnetic, and dielectric properties of the obtained samples on the Pr doping concentration was investigated. The morphologies and crystal structure characterizations confirm that the Pr ion has effectively doped in the yttrium iron garnet ferrites and increased the lattice parameter and grain size. The magnetic characterization shows that the saturation magnetization also increases with the Pr concentration and obtains a maximum value of 27.68 emu/g at x = 0.15. Additionally, the doping of Pr increases the magnetic anisotropy constant K1 which increases ferromagnetic resonance linewidth. Lastly, the dielectric properties measurement further indicates that Pr doping improves both real and imaginary parts of permittivity, and the highest value of the real part of the permittivity is obtained at x = 0.15. Consequently, the crystal structure, microstructure, magnetic properties, and dielectric properties of garnet ferrite can be effectively regulated by the Pr doping concentration, and excellent properties of the ceramic can be obtained at x = 0.15, which allows potential applications in microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.N. Akhtar, A.B. Sulong, M. Ahmad, M.A. Khan, A. Ali, and M.U. Islam, Impacts of Gd-Ce on the structural, morphological and magnetic properties of garnet nanocrystalline ferrites synthesized via sol-gel route. J. Alloy. Comp. 660, 486 (2016).

    Article  CAS  Google Scholar 

  2. M.N. Akhtar, M. Yousaf, S.N. Khan, M.S. Nazir, M. Ahmad, and M.A. Khan, Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho, Yb) nanoferrites for high frequency applications. Ceram. Int. 43, 17032 (2017).

    Article  CAS  Google Scholar 

  3. R. Nazlan, M. Hashim, I.R. Ibrahim, F.M. Idris, I. Ismail, W.N.W. Ab Rahman, N.H. Abdullah, M.M.M. Zulkimi, and M.S. Mustaffa, Indium-substitution and Indium-less case effects on structural and magnetic properties of yttrium-iron garnet. J. Phys. Chem. Solids. 85, 1 (2015).

    Article  CAS  Google Scholar 

  4. M. Niyaifar, H. Mohammadpour, M. Dorafshani, and A. Hasanpour, Size dependence of non-magnetic thickness in YIG nanoparticles. J. Magn. Magn. Mater. 409, 104 (2016).

    Article  CAS  Google Scholar 

  5. C.C. Huang, Y.H. Hung, J.Y. Huang, and M.F. Kuo, Performance improvement of S-band phase shifter using Al, Mn, and Gd doped Y3Fe5O12 and sintering optimization. J. Alloy. Comp. 643, S193 (2015).

    Article  CAS  Google Scholar 

  6. Y.J. Wu, C. Yu, X.M. Chen, and J. Li, Effects of Al substitution on dielectric response and magnetic behavior of yttrium iron garnet ceramics. J. Am. Ceram. Soc. 95, 1671 (2012).

    Article  CAS  Google Scholar 

  7. N. Jia, H.W. Zhang, J. Li, Y.L. Liao, L.C. Jin, C. Liu, and V.G. Harris, Polycrystalline Bi substituted YIG ferrite processed via low temperature sintering. J. Alloy. Comp. 695, 931 (2017).

    Article  CAS  Google Scholar 

  8. M.N. Akhtar, A.B. Sulong, M.A. Khan, M. Ahmad, G. Murtaza, M.R. Raza, R. Raza, M. Saleem, and M. Kashif, Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method. J. Magn. Magn. Mater. 401, 425 (2016).

    Article  CAS  Google Scholar 

  9. A.N. Hapishah, M. Hashim, M.M. Syazwan, I.R. Idza, N. Rodziah, and I. Ismayadi, Phase, microstructure and magnetic evaluation in yttrium iron garnet (YIG) synthesized via mechanical alloying. J. Mater. Sci.-Mater. Electron. 28, 15270 (2017).

    Article  CAS  Google Scholar 

  10. M.N. Akhtar, M.A. Khan, M. Ahmad, G. Murtaza, R. Raza, S.F. Shaukat, M.H. Asif, N. Nasir, G. Abbas, M.S. Nazir, and M.R. Raza, Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393 (2014).

    Article  Google Scholar 

  11. R. Pena-Garcia, Y. Guerra, F.E.P. Santos, L.C. Almeida, and E. Padron-Hernandez, Structural and magnetic properties of Ni-doped yttrium iron garnet nanopowders. J. Magn. Magn. Mater. 492, 165650 (2019).

    Article  CAS  Google Scholar 

  12. F.W. Aldbea, N.B. Ibrahim, and M. Yahya, Effect of adding aluminum ion on the structural, optical, electrical and magnetic properties of terbium doped yttrium iron garnet nanoparticles films prepared by sol-gel method. Appl. Surf. Sci. 321, 150 (2014).

    Article  CAS  Google Scholar 

  13. R. Peña-Garcia, A. Delgado, Y. Guerra, B.V.M. Farias, D. Martinze, E. Skovroinski, A. Galembeck, and E. Padrón-Hernández, Magnetic and structural properties of Zn-doped yttrium iron garnet nanoparticles. Phys. Status. Solidi. A. 213, 2485 (2016).

    Article  Google Scholar 

  14. S. Khanra, A. Bhaumik, Y.D. Kolekar, P. Kahol, and K. Ghosh, Structural and magnetic studies of Y3Fe5-5xMo5xO12. J. Magn. Magn. Mater. 369, 14 (2014).

    Article  CAS  Google Scholar 

  15. R.P. Garcia, Y. Guerra, D.M. Buitrago, L.R.F. Leal, F.E.P. Santos, and E.P. Hernández, Synthesis and characterization of yttrium iron garnet nanoparticles doped with cobalt. Ceram. Int. 44, 11314 (2018).

    Article  Google Scholar 

  16. K. Bouziane, A. Yousif, H.M. Widatallah, and J. Amighian, Site occupancy and magnetic study of Al3+ and Cr3+ co-substituted Y3Fe5O12. J. Magn. Magn. Mater. 320, 2330 (2008).

    Article  CAS  Google Scholar 

  17. C.C. Huang, C.C. Mo, Y.H. Hung, W.Z. Zuo, J.Y. Huang, H.H. Hsu, and C.H. Cheng, Effect of particle size of as-milled powders on microstructural and magnetic properties of Y3MnxAl0.8-xFe4.2O12 ferrites. J. Am. Ceram. Soc. 102, 3525 (2019).

    Article  Google Scholar 

  18. Z.Z. Zhang, H.L. Lv, Z.K. Feng, and Y. Nie, Study on the magnetically tunable filters based on Mnn+ and Al3+ co-doped YIG ferrite. IEEE. Trans. Magn. 51, 2802704 (2015).

    Google Scholar 

  19. E. Baños-López, C.A. Cortés-Escobedo, F. Sánchez-De Jesús, A. Barba-Pingarrón, and A.M. Bolarín-Miró, Crystal structure and magnetic properties of cerium-doped YIG: effect of doping concentration and annealing temperature. J. Alloy. Compd. 730, 127 (2018).

    Article  Google Scholar 

  20. S.K.S. Patel, J.H. Lee, B. Bhoi, J.T. Lim, C.S. Kim, and S.K. Kim, Effects of isovalent substitution on structural and magnetic properties of nanocrystalline Y3-xGdxFe5O12 (0≤x≤3) garnets. J. Magn. Magn. Mater. 452, 48 (2018).

    Article  CAS  Google Scholar 

  21. T. Arun, M. Vairavel, S.G. Raj, and R.J. Joseyphus, Crystallization kinetics of Nd-substituted yttrium iron garnet prepared through sol-gel auto-combustion method. Ceram. Int. 38, 2369 (2012).

    Article  CAS  Google Scholar 

  22. V. Sharma, and B.K. Kuanr, Magnetic and crystallographic properties of rare-earth substituted Yttrium-Iron Garnet. J. Alloy. Compd. 748, 591 (2018).

    Article  CAS  Google Scholar 

  23. H.C. Cao, H. Zheng, L.N. Fan, Z.F. Cheng, J.W. Zhou, Q. Wu, P. Zheng, L. Zheng, and Y. Zhang, Structural, morphological, dielectric and magnetic properties of Zn-Zr co-doping yttrium iron garnet. Int. J. Appl. Ceram. Tec. 17, 812 (2019).

    Google Scholar 

  24. P. Pahuja, R. Sharma, C. Prakash, and R.P. Tandon, Synthesis and characterization of Ni0.8Co0.2Fe2O4-Ba0.95 Sr0.05TiO3 multiferroic composites. Ceram. Int. 39, 9435 (2013).

    Article  CAS  Google Scholar 

  25. Y.I. Kim, M.K. Jeon, and W.B. Im, Crystal structural study of Ho-doped ceria using X-ray powder diffraction data. J. Electroceram. 31, 254 (2013).

    Article  CAS  Google Scholar 

  26. X.F. Wu, Z. Ding, N.N. Song, L. Li, and W. Wang, Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles. Ceram. Int. 42, 4246 (2016).

    Article  CAS  Google Scholar 

  27. L.R.F. Leal, Y. Guerra, E. Padrón-Hernández, A.R. Rodrigues, F.E.P. Santos, and R. Peña-Garcia, Structural and magnetic properties of yttrium iron garnet nanoparticles doped with copper obtained by sol gel method. Mater. Lett. 236, 547 (2019).

    Article  CAS  Google Scholar 

  28. E.M. Zhou, H. Zheng, L. Zheng, P. Zheng, Z.H. Ying, J.X. Ding, and J.J. Zhou, Synthesis of dense, fine-grained hexagonal barium ferrite ceramics by two-step sintering process. Int. J. Appl. Ceram. Technol. 15, 1023 (2018).

    Article  CAS  Google Scholar 

  29. H. Su, X.L. Tang, H.W. Zhang, Z.Y. Zhong, and J. Shen, Sintering dense NiZn ferrite by two-step sintering process. J. Appl. Phys. 109, 07A501 (2011).

    Article  Google Scholar 

  30. Y. Yang, J. Li, J.X. Zhao, X. Chen, G.W. Gan, G. Wang, and L.F. He, Synthesis of nickel zinc ferrite ceramics on enhancing gyromagnetic properties by a novel low-temperature sintering approach for LTCC applications. J. Alloy. Compd. 778, 8 (2019).

    Article  CAS  Google Scholar 

  31. Z.J. Cheng, Y.M. Cui, H. Yang, and Y. Chen, Effect of lanthanum ions on magnetic properties of Y3Fe5O12 nanoparticles. J Nanopart Res. 11, 1185 (2009).

    Article  CAS  Google Scholar 

  32. M. Niyaifar, H. Mohammadpour, and A. Behmanesh, Correlation of structural distortion with magnetic properties of Pr-YIG system. J. Alloy. Compd. 683, 495 (2016).

    Article  CAS  Google Scholar 

  33. W.M. Yang, L.X. Wang, Y.J. Ding, and Q.T. Zhang, Narrowing of ferromagnetic resonance linewidth in calcium substituted YIG powders by Zr4+/Sn4+ substitution. J. Mater. Sci: Mater. Electron. 25, 4517 (2014).

    CAS  Google Scholar 

  34. K. Sun, Z.Y. Pu, Y. Yang, L.L. Chen, Z. Yu, C.J. Wu, X.N. Jiang, and Z.W. Lan, Rietveld refinement, microstructure and ferromagnetic resonance linewidth of iron-deficiency NiCuZn. J. Alloy. Compd. 681, 139 (2016).

    Article  CAS  Google Scholar 

  35. R.D. Guo, Z. Yu, Y. Yang, X.N. Jiang, K. Sun, C.J. Wu, Z.Y. Xu, and Z.W. Lan, Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite. J. Alloy. Compd. 589, 1 (2014).

    Article  CAS  Google Scholar 

  36. R. Das, T. Sarkar, and K. Mandal, Multiferroic properties of Ba2+ and Gd3+ co-doped bismuth ferrite: magnetic, ferroelectric and impedance spectrscopic analysis. J. Phys. D: Appl. Phys. 45, 455002 (2012).

    Article  Google Scholar 

  37. J.L. Mattei, E.L. Guen, and A. Chevalier, Dense and half-dense NiZnCo ferrite ceramics: their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies. J. Appl. Phys. 117, 17A520 (2015).

    Article  Google Scholar 

  38. J. Zhu, K.J. Tseng, and C.F. Foo, Effect of multo-segment structure on core losses in MnZn ferrites at high frequencies. IEEE. T. Magn. 36, 3408 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the National Key Research and Development Project (Grant No. 2019YFF0217205), National Natural Science Foundation of China (Grant No. 51702075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Zhou, K., Zhao, Y. et al. Crystal Structure, Magnetic, Dielectric and Ferromagnetic Resonance Properties of Pr-Zn‐Zr Co-Doped Yttrium Iron Garnet. J. Electron. Mater. 51, 1180–1188 (2022). https://doi.org/10.1007/s11664-021-09382-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09382-w

Keywords