Abstract
The regulation of magnetic and dielectric properties for yttrium iron garnet ferrites by ion doping is highly desirable in microwave devices. In this work, yttrium iron garnet ferrites co-doped with Pr-Zn-Zr atoms with the chemical formula PrxY3-xZn0.1Zr0.1Fe4.8O12 (x = 0, 0.1, 0.15, and 0.2) were prepared. The dependence of the crystal structure, microstructure, magnetic, and dielectric properties of the obtained samples on the Pr doping concentration was investigated. The morphologies and crystal structure characterizations confirm that the Pr ion has effectively doped in the yttrium iron garnet ferrites and increased the lattice parameter and grain size. The magnetic characterization shows that the saturation magnetization also increases with the Pr concentration and obtains a maximum value of 27.68 emu/g at x = 0.15. Additionally, the doping of Pr increases the magnetic anisotropy constant K1 which increases ferromagnetic resonance linewidth. Lastly, the dielectric properties measurement further indicates that Pr doping improves both real and imaginary parts of permittivity, and the highest value of the real part of the permittivity is obtained at x = 0.15. Consequently, the crystal structure, microstructure, magnetic properties, and dielectric properties of garnet ferrite can be effectively regulated by the Pr doping concentration, and excellent properties of the ceramic can be obtained at x = 0.15, which allows potential applications in microwave devices.








Similar content being viewed by others
References
M.N. Akhtar, A.B. Sulong, M. Ahmad, M.A. Khan, A. Ali, and M.U. Islam, Impacts of Gd-Ce on the structural, morphological and magnetic properties of garnet nanocrystalline ferrites synthesized via sol-gel route. J. Alloy. Comp. 660, 486 (2016).
M.N. Akhtar, M. Yousaf, S.N. Khan, M.S. Nazir, M. Ahmad, and M.A. Khan, Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho, Yb) nanoferrites for high frequency applications. Ceram. Int. 43, 17032 (2017).
R. Nazlan, M. Hashim, I.R. Ibrahim, F.M. Idris, I. Ismail, W.N.W. Ab Rahman, N.H. Abdullah, M.M.M. Zulkimi, and M.S. Mustaffa, Indium-substitution and Indium-less case effects on structural and magnetic properties of yttrium-iron garnet. J. Phys. Chem. Solids. 85, 1 (2015).
M. Niyaifar, H. Mohammadpour, M. Dorafshani, and A. Hasanpour, Size dependence of non-magnetic thickness in YIG nanoparticles. J. Magn. Magn. Mater. 409, 104 (2016).
C.C. Huang, Y.H. Hung, J.Y. Huang, and M.F. Kuo, Performance improvement of S-band phase shifter using Al, Mn, and Gd doped Y3Fe5O12 and sintering optimization. J. Alloy. Comp. 643, S193 (2015).
Y.J. Wu, C. Yu, X.M. Chen, and J. Li, Effects of Al substitution on dielectric response and magnetic behavior of yttrium iron garnet ceramics. J. Am. Ceram. Soc. 95, 1671 (2012).
N. Jia, H.W. Zhang, J. Li, Y.L. Liao, L.C. Jin, C. Liu, and V.G. Harris, Polycrystalline Bi substituted YIG ferrite processed via low temperature sintering. J. Alloy. Comp. 695, 931 (2017).
M.N. Akhtar, A.B. Sulong, M.A. Khan, M. Ahmad, G. Murtaza, M.R. Raza, R. Raza, M. Saleem, and M. Kashif, Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method. J. Magn. Magn. Mater. 401, 425 (2016).
A.N. Hapishah, M. Hashim, M.M. Syazwan, I.R. Idza, N. Rodziah, and I. Ismayadi, Phase, microstructure and magnetic evaluation in yttrium iron garnet (YIG) synthesized via mechanical alloying. J. Mater. Sci.-Mater. Electron. 28, 15270 (2017).
M.N. Akhtar, M.A. Khan, M. Ahmad, G. Murtaza, R. Raza, S.F. Shaukat, M.H. Asif, N. Nasir, G. Abbas, M.S. Nazir, and M.R. Raza, Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393 (2014).
R. Pena-Garcia, Y. Guerra, F.E.P. Santos, L.C. Almeida, and E. Padron-Hernandez, Structural and magnetic properties of Ni-doped yttrium iron garnet nanopowders. J. Magn. Magn. Mater. 492, 165650 (2019).
F.W. Aldbea, N.B. Ibrahim, and M. Yahya, Effect of adding aluminum ion on the structural, optical, electrical and magnetic properties of terbium doped yttrium iron garnet nanoparticles films prepared by sol-gel method. Appl. Surf. Sci. 321, 150 (2014).
R. Peña-Garcia, A. Delgado, Y. Guerra, B.V.M. Farias, D. Martinze, E. Skovroinski, A. Galembeck, and E. Padrón-Hernández, Magnetic and structural properties of Zn-doped yttrium iron garnet nanoparticles. Phys. Status. Solidi. A. 213, 2485 (2016).
S. Khanra, A. Bhaumik, Y.D. Kolekar, P. Kahol, and K. Ghosh, Structural and magnetic studies of Y3Fe5-5xMo5xO12. J. Magn. Magn. Mater. 369, 14 (2014).
R.P. Garcia, Y. Guerra, D.M. Buitrago, L.R.F. Leal, F.E.P. Santos, and E.P. Hernández, Synthesis and characterization of yttrium iron garnet nanoparticles doped with cobalt. Ceram. Int. 44, 11314 (2018).
K. Bouziane, A. Yousif, H.M. Widatallah, and J. Amighian, Site occupancy and magnetic study of Al3+ and Cr3+ co-substituted Y3Fe5O12. J. Magn. Magn. Mater. 320, 2330 (2008).
C.C. Huang, C.C. Mo, Y.H. Hung, W.Z. Zuo, J.Y. Huang, H.H. Hsu, and C.H. Cheng, Effect of particle size of as-milled powders on microstructural and magnetic properties of Y3MnxAl0.8-xFe4.2O12 ferrites. J. Am. Ceram. Soc. 102, 3525 (2019).
Z.Z. Zhang, H.L. Lv, Z.K. Feng, and Y. Nie, Study on the magnetically tunable filters based on Mnn+ and Al3+ co-doped YIG ferrite. IEEE. Trans. Magn. 51, 2802704 (2015).
E. Baños-López, C.A. Cortés-Escobedo, F. Sánchez-De Jesús, A. Barba-Pingarrón, and A.M. Bolarín-Miró, Crystal structure and magnetic properties of cerium-doped YIG: effect of doping concentration and annealing temperature. J. Alloy. Compd. 730, 127 (2018).
S.K.S. Patel, J.H. Lee, B. Bhoi, J.T. Lim, C.S. Kim, and S.K. Kim, Effects of isovalent substitution on structural and magnetic properties of nanocrystalline Y3-xGdxFe5O12 (0≤x≤3) garnets. J. Magn. Magn. Mater. 452, 48 (2018).
T. Arun, M. Vairavel, S.G. Raj, and R.J. Joseyphus, Crystallization kinetics of Nd-substituted yttrium iron garnet prepared through sol-gel auto-combustion method. Ceram. Int. 38, 2369 (2012).
V. Sharma, and B.K. Kuanr, Magnetic and crystallographic properties of rare-earth substituted Yttrium-Iron Garnet. J. Alloy. Compd. 748, 591 (2018).
H.C. Cao, H. Zheng, L.N. Fan, Z.F. Cheng, J.W. Zhou, Q. Wu, P. Zheng, L. Zheng, and Y. Zhang, Structural, morphological, dielectric and magnetic properties of Zn-Zr co-doping yttrium iron garnet. Int. J. Appl. Ceram. Tec. 17, 812 (2019).
P. Pahuja, R. Sharma, C. Prakash, and R.P. Tandon, Synthesis and characterization of Ni0.8Co0.2Fe2O4-Ba0.95 Sr0.05TiO3 multiferroic composites. Ceram. Int. 39, 9435 (2013).
Y.I. Kim, M.K. Jeon, and W.B. Im, Crystal structural study of Ho-doped ceria using X-ray powder diffraction data. J. Electroceram. 31, 254 (2013).
X.F. Wu, Z. Ding, N.N. Song, L. Li, and W. Wang, Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles. Ceram. Int. 42, 4246 (2016).
L.R.F. Leal, Y. Guerra, E. Padrón-Hernández, A.R. Rodrigues, F.E.P. Santos, and R. Peña-Garcia, Structural and magnetic properties of yttrium iron garnet nanoparticles doped with copper obtained by sol gel method. Mater. Lett. 236, 547 (2019).
E.M. Zhou, H. Zheng, L. Zheng, P. Zheng, Z.H. Ying, J.X. Ding, and J.J. Zhou, Synthesis of dense, fine-grained hexagonal barium ferrite ceramics by two-step sintering process. Int. J. Appl. Ceram. Technol. 15, 1023 (2018).
H. Su, X.L. Tang, H.W. Zhang, Z.Y. Zhong, and J. Shen, Sintering dense NiZn ferrite by two-step sintering process. J. Appl. Phys. 109, 07A501 (2011).
Y. Yang, J. Li, J.X. Zhao, X. Chen, G.W. Gan, G. Wang, and L.F. He, Synthesis of nickel zinc ferrite ceramics on enhancing gyromagnetic properties by a novel low-temperature sintering approach for LTCC applications. J. Alloy. Compd. 778, 8 (2019).
Z.J. Cheng, Y.M. Cui, H. Yang, and Y. Chen, Effect of lanthanum ions on magnetic properties of Y3Fe5O12 nanoparticles. J Nanopart Res. 11, 1185 (2009).
M. Niyaifar, H. Mohammadpour, and A. Behmanesh, Correlation of structural distortion with magnetic properties of Pr-YIG system. J. Alloy. Compd. 683, 495 (2016).
W.M. Yang, L.X. Wang, Y.J. Ding, and Q.T. Zhang, Narrowing of ferromagnetic resonance linewidth in calcium substituted YIG powders by Zr4+/Sn4+ substitution. J. Mater. Sci: Mater. Electron. 25, 4517 (2014).
K. Sun, Z.Y. Pu, Y. Yang, L.L. Chen, Z. Yu, C.J. Wu, X.N. Jiang, and Z.W. Lan, Rietveld refinement, microstructure and ferromagnetic resonance linewidth of iron-deficiency NiCuZn. J. Alloy. Compd. 681, 139 (2016).
R.D. Guo, Z. Yu, Y. Yang, X.N. Jiang, K. Sun, C.J. Wu, Z.Y. Xu, and Z.W. Lan, Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite. J. Alloy. Compd. 589, 1 (2014).
R. Das, T. Sarkar, and K. Mandal, Multiferroic properties of Ba2+ and Gd3+ co-doped bismuth ferrite: magnetic, ferroelectric and impedance spectrscopic analysis. J. Phys. D: Appl. Phys. 45, 455002 (2012).
J.L. Mattei, E.L. Guen, and A. Chevalier, Dense and half-dense NiZnCo ferrite ceramics: their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies. J. Appl. Phys. 117, 17A520 (2015).
J. Zhu, K.J. Tseng, and C.F. Foo, Effect of multo-segment structure on core losses in MnZn ferrites at high frequencies. IEEE. T. Magn. 36, 3408 (2000).
Acknowledgments
This work is funded by the National Key Research and Development Project (Grant No. 2019YFF0217205), National Natural Science Foundation of China (Grant No. 51702075).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ji, X., Zhou, K., Zhao, Y. et al. Crystal Structure, Magnetic, Dielectric and Ferromagnetic Resonance Properties of Pr-Zn‐Zr Co-Doped Yttrium Iron Garnet. J. Electron. Mater. 51, 1180–1188 (2022). https://doi.org/10.1007/s11664-021-09382-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-021-09382-w