Skip to main content
Log in

Measurement of the Conductivity of Screen Printing Films at Microwave Frequency Employing Resonant Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The conductivity of screen printing films at microwave frequency is one of the most important properties of conductive ink when applied in printed electronics. However, the existing methods of conductivity characterization at microwave frequency focus on homogeneous metal films or semiconductors, which are not suitable for conductive composite materials with poor thickness uniformity, like screen printing films. In this research, by applying a classic stripline ring resonator, a rigorous electromagnetic model was set up, and the conductivity of the screen printing film was able to be deduced by comparison between the measurement and simulation results. As a result, the equivalent conductivity of the film is 2 × 106 S/m at 1–3 GHz, which is a little higher than its average direct current conductivity of 1.82 × 106 S/m. This method has been proved to be feasible in measuring the conductivity of screen printing films at microwave frequency. Furthermore, it has great potential in the characterization of other printed conductive composite materials on rough surfaces, like textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Venkata Krishna Rao, K. Venkata Abhinav, P.S. Karthik, and S. Prakash Singh, RSC Adv. 5, 95 (2015).

    Google Scholar 

  2. A. Mohammed and M. Pecht, Appl. Phys. Lett. 109, 18 (2016).

    Article  Google Scholar 

  3. Q. Huang and Y. Zhu, Adv. Mater. Technol. 4, 5 (2019).

    CAS  Google Scholar 

  4. S. Merilampi, T. Laine-Ma, and P. Ruuskanen, Microelectron. Reliab. 49, 7 (2009).

    Article  Google Scholar 

  5. I. Kazani, C. Hertleer, G. De Mey, A. Schwarz, G. Guxho, and L. Van Langenhove, Fibres. Text. East. Eur. 20, 1 (2012).

    Google Scholar 

  6. X. Nie, H. Wang, and Z. Jing, Appl. Surf. Sci. 261, 554 (2012).

    Article  CAS  Google Scholar 

  7. J. Ding, J. Liu, Q. Tian, W. Zhaohui, W. Yao, Z. Dai, L. Liu, and W. Wei, Nanoscale Res. Lett. 11, 1 (2016).

    Article  Google Scholar 

  8. H. Xu, X. Tang, H. Sun, and H. Zhao, in 18th International Conference on Electronic Packaging Technology (2017), pp. 1470–1473.

  9. F.-F. Li, Y. Poo, and R.-X. Wu, in International Workshop on Antenna Technology (iWAT) (2018), p. 27.

  10. L.-T. Hwang and I. Turlik, IEEE Trans. Compon., Packag. Manuf. Technol. 15, 1 (1992).

    Google Scholar 

  11. A.A. Zadorozhko, Y. Monarkha, and D. Konstantinov, Phys. Rev. Lett. 120, 4 (2018).

    Article  Google Scholar 

  12. M. Walther, D.G. Cooke, C. Sherstan, M. Hajar, M.R. Freeman, and F.A. Hegmann, Phys. Rev. B 76, 12 (2007).

    Article  Google Scholar 

  13. H.J. Joyce, J.L. Boland, C.L. Davies, S.A. Baig, and M.B. Johnston, Semicond. Sci. Technol. 31, 10 (2016).

    Article  Google Scholar 

  14. K. Baba, S. Tsunekawa, T. Fukuda, and T. Takagi, Jpn. J. Appl. Phys. 36, 8R (1993).

    Google Scholar 

  15. M. Shahpari, Electronics 8, 21 (2019).

    Article  CAS  Google Scholar 

  16. Y. Poo, W. Rui-Xin, X. Fan, and J.Q. Xiao, Rev. Sci. Instrum. 81, 6 (2010).

    Article  Google Scholar 

  17. J.S. Gómez-Díaz, J. Perruisseau-Carrier, P. Sharma, and A. Ionescu, J. Appl. Phys. 111, 11 (2012).

    Article  Google Scholar 

  18. T. Zychowicz, J. Krupka, and J. Mazierska, in Proceedings of Asia-Pacific Microwave Conference (2006), pp. 572–574.

  19. K. Jerzy, S. Wlodek, and K. Norbert, J. Nanosci. Nanotechnol. 11, 4 (2011).

    Google Scholar 

  20. J. Krupka, D. Nguyen, and J. Mazierska, Meas. Sci. Technol. 22, 8 (2011).

    Article  Google Scholar 

  21. J. Krupka, Meas. Sci. Technol. 24, 6 (2013).

    Article  Google Scholar 

  22. Z. Buczko and J. Krupka, Trans. IMF 86, 5 (2013).

    Google Scholar 

  23. K. Chang, Microwave Ring Circuits and Antennas (New York: Wiley, 1996), pp. 6–7.

    Google Scholar 

  24. A. Rashidian, M.T. Aligodarz, and M.T. Klymyshyn, IEEE Trans. Dielectr. Electr. Insul. 19, 4 (2012).

    Article  Google Scholar 

  25. A. Kulkarni and V. Deshmukh, Int. J. Sci. Res. 4, 4 (2015).

    Google Scholar 

  26. Y.S. Wu and F.J. Rosenbaum, IEEE Trans. Microwave Theory Technol. 21, 7 (1973).

    Article  Google Scholar 

  27. S.G. Pintzos and R. Pregla, IEEE Trans. Microwave Theory Technol. 26, 10 (1978).

    Article  Google Scholar 

  28. A. Vitas, V. Vita, G.E. Chatzarakis, and L. Ekonomou, in Proceedings of the 9th WSEAS International Conference on Telecommunications and Informatics (2014), pp. 227–231.

  29. L. Yang, A. Rida, R. Vyas, and M.M. Tentzeris, IEEE Trans. Microwave Theory Technol. 55, 12 (2007).

    Google Scholar 

  30. M.T. Sebastian, Dielectric Materials for Wireless Communication (Georgia: Elsevier, 2008), pp. 17–41.

    Google Scholar 

  31. J-M Heinola, K-P Latti, J-P Strom, M. Kettunen and P. Silventoinen, in Conference on Electrical Insulation & Dielectric Phenomena (2004), pp. 692–695.

  32. B.S. Cook and A. Shamim, IEEE Trans. Antennas Propag. 60, 9 (2012).

    Article  Google Scholar 

  33. S.B. Cohn, IRE IEEE Trans. Microw. Theory Technol. 3, 2 (1955).

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the National Natural Science Foundation of China (No. 51405079), the Fundamental Research Funds for the Central Universities (No. CUSF-DH-D-2018029) and Shanghai Natural Science Foundation (No. 20ZR1400500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Hu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, H., Hu, J. & Ding, X. Measurement of the Conductivity of Screen Printing Films at Microwave Frequency Employing Resonant Method. J. Electron. Mater. 50, 521–527 (2021). https://doi.org/10.1007/s11664-020-08594-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08594-w

Keywords

Navigation