Skip to main content

Advertisement

Log in

Porous Carbon-Based Nanocomposites Containing Fe2P Nanoparticles as Promising Materials for Supercapacitor Electrodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Pseudocapacitive materials can enhance the energy storage performance of supercapacitors by making use of surface redox reactions. In recent years, different iron compounds have been investigated as pseudocapacitive materials, showing promising features for supercapacitor electrode applications. Carbon nanocomposites containing iron/phosphorus compounds have been prepared from porous carbon, followed by thermal treatment at different temperatures (700°C to 1000°C). The obtained supercapacitor electrodes were evaluated by electrochemical analyses using sulfuric acid electrolyte. The as-prepared nanocomposite contained nanostructured iron oxides or oxyhydroxides, whereas the nanocomposites prepared at 700°C to 900°C were composed of nanostructured iron phosphates. On the other hand, heat treatment at 1000°C caused the formation of nanocrystalline iron phosphides (mostly Fe2P nanoparticles). The Fe-containing samples showed enhanced specific capacitance (246 F g−1 to 447 F g−1 at 10 A g−1), which can be related to the pseudocapacitive contribution of the iron compounds. The sample heat treated at 1000°C exhibited favorable electrochemical performance, showing high electrical capacitance and good rate capability at 40 A g−1. These results reveal that porous carbon/iron phosphide nanocomposites are promising materials for use in supercapacitor electrode applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Miller, Ultracapacitor applications. Power and Energy Series, 59 (The Institution of Engineering and Technology, London, 2011).

  2. C. Breitkopf and K. Swider-Lyons, Handbook of Electrochemical Energy (Berlin: Springer, 2017).

    Google Scholar 

  3. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (New York: Kluwer Academic/Plenum, 1999).

    Google Scholar 

  4. F. Béguin and E. Frąckowiak, Supercapacitors: Materials, Systems, and Applications (Weinheim: Wiley, 2013).

    Google Scholar 

  5. A.G. Pandolfo and A.F. Hollenkamp, J. Power Sources 157, 11 (2006).

    CAS  Google Scholar 

  6. G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    CAS  Google Scholar 

  7. A. Cuña, N. Tancredi, J. Bussi, A.C. Deiana, M.F. Sardella, V. Barranco, and J.M. Rojo, Waste Biomass Valor. 5, 305 (2014).

    Google Scholar 

  8. A. Cuña, N. Tancredi, J. Bussi, V. Barranco, T.A. Centeno, A. Quevedo, and J.M. Rojo, J. Electrochem. Soc. 161, A1806 (2014).

    Google Scholar 

  9. D. Liu, S. Yu, Y. Shen, H. Chen, Z. Shen, S. Zhao, S. Fu, Y. Yu, and B. Bao, Ind. Eng. Chem. Res. 54, 12570 (2015).

    CAS  Google Scholar 

  10. A. Cuña, M.R. Ortega Vega, E. Leal da Silva, N. Tancredi, C. Radtke, and C.F. Malfatti, Int. J. Hydrogen Energy 41, 12127 (2016).

    Google Scholar 

  11. Q. Tian, X. Wang, X. Xu, M. Zhang, L. Wang, X. Zhao, Z. An, H. Yao, and J. Gao, Mater. Chem. Phys. 213, 267 (2018).

    CAS  Google Scholar 

  12. Z. Gao, Y. Zhang, N. Song, and X. Li, Mater. Res. Lett. 5, 89 (2017).

    Google Scholar 

  13. X. Zhao, W. Li, F. Kong, H. Chen, Z. Wang, S. Liu, and C. Jin, Mater. Chem. Phys. 219, 461 (2018).

    CAS  Google Scholar 

  14. O. Ioannidou and A. Zabanioutou, Renew. Sustain. Energy Rev. 11, 1966 (2007).

    CAS  Google Scholar 

  15. G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    CAS  Google Scholar 

  16. M.A. Teixeira, Biomass Bioenergy 32, 857 (2008).

    CAS  Google Scholar 

  17. J.C.C. Freitas, F.G. Emmerich, and T.J. Bonagamba, Chem. Mater. 12, 711 (2000).

    CAS  Google Scholar 

  18. F.G. Emmerich and C.A. Luengo, Biomass Bioenergy 10, 41 (1996).

    CAS  Google Scholar 

  19. G.R. Gonçalves, M.A. Schettino Jr, M.K. Morigaki, E. Nunes, A.G. Cunha, F.G. Emmerich, E.C. Passamani, E. Baggio-Saitovitch, and J.C.C. Freitas, J. Nanopart. Res. 17, 303 (2015).

    Google Scholar 

  20. T.R. Lopes, D.F. Cipriano, G.R. Gonçalves, H.A. Honorato, M.A. Schettino Jr, A.G. Cunha, F.G. Emmerich, and J.C.C. Freitas, J. Chem. Environ. Eng. 5, 6016 (2017).

    CAS  Google Scholar 

  21. H. Marsh and F. Rodríguez-Reinoso, Activated Carbon (Oxford: Elsevier, 2006).

    Google Scholar 

  22. J.C.C. Freitas, M.A. Schettino Jr, A.G. Cunha, F.G. Emmerich, A.C. Bloise, E.R. de Azevedo, and T.J. Bonagamba, Carbon 45, 1097 (2007).

    CAS  Google Scholar 

  23. A.M. Puziy, O.I. Poddubnaya, R.P. Socha, J. Gurgul, and M. Wisniewski, Carbon 46, 2113 (2008).

    CAS  Google Scholar 

  24. D. Hulicova-Jurcakova, A.M. Puziy, O.I. Poddubnaya, F. Suárez-García, J.M.D. Tascón, and G.Q. Lu, J. Am. Chem. Soc. 131, 5026 (2009).

    CAS  Google Scholar 

  25. G.-H. Lee, M.R. Jo, K. Zhang, and Y.-M. Kang, J. Mater. Chem. A 5, 3683 (2017).

    CAS  Google Scholar 

  26. X. Sun, P. Cheng, H. Wang, H. Xu, L. Dang, Z. Liu, and Z. Lei, Carbon 92, 1 (2015).

    CAS  Google Scholar 

  27. J. Zhang, S. Ali, F. Liu, A. Ali, K. Wang, and X. Wang, J. Electron. Mater. 48, 4196 (2019).

    CAS  Google Scholar 

  28. V. Subramanian, S.C. Hall, P.H. Smith, and B. Rambabu, Solid State Ion. 175, 511 (2004).

    CAS  Google Scholar 

  29. Y. Wang, C. Shen, L. Niu, R. Li, H. Guo, Y. Shi, C. Li, X. Liu, and Y. Gong, J. Mater. Chem. A 4, 9977 (2016).

    CAS  Google Scholar 

  30. P. Wang, Y.-J. Zhao, L.-X. Wen, J.-F. Chen, and Z.-G. Lei, Ind. Eng. Chem. Res. 53, 20116 (2014).

    CAS  Google Scholar 

  31. L. O’Neill, C. Johnston, and P.S. Grant, J. Power Sources 274, 907 (2015).

    Google Scholar 

  32. G. Zhang, X. Xiao, B. Li, P. Gu, H. Xue, and H. Pang, J. Mater. Chem. A 5, 8155 (2017).

    CAS  Google Scholar 

  33. N.M. Ndiaye, T.M. Masikhwa, B.D. Ngom, M.J. Madito, K.O. Oyedotun, J.K. Dangbegnon, and N. Manyala, Mater. Chem. Phys. 214, 192 (2018).

    CAS  Google Scholar 

  34. S. Nilmoung, P. Kidkhunthod, and S. Maensiri, Mater. Chem. Phys. 220, 190 (2018).

    CAS  Google Scholar 

  35. P. Zhao, W. Li, G. Wang, B. Yu, X. Li, J. Bai, and Z. Ren, J. Alloys Compd. 604, 87 (2014).

    CAS  Google Scholar 

  36. N. Sinan and E. Unur, Mater. Chem. Phys. 183, 571 (2016).

    CAS  Google Scholar 

  37. F. Wang, Y. Zeng, D. Zheng, C. Li, P. Liu, X. Lu, and Y. Tong, Carbon 103, 56 (2016).

    CAS  Google Scholar 

  38. J. Sun, P. Zan, X. Yang, L. Ye, and L. Zhao, Electrochim. Acta 215, 483 (2016).

    CAS  Google Scholar 

  39. A. Adhikari, R. Oraon, S.K. Tiwari, P. Saren, J.-H. Lee, N.H. Kim, and G.C. Nayak, Ind. Eng. Chem. Res. 57, 1350 (2018).

    CAS  Google Scholar 

  40. R. Mohan and R. Paulose, J. Electron. Mater. 47, 6878 (2018).

    CAS  Google Scholar 

  41. J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao, and Y. Liu, Nanoscale 3, 5034 (2011).

    CAS  Google Scholar 

  42. Y. Wang, L. Zhang, H. Li, Y. Wang, L. Jiao, H. Yuan, L. Chen, H. Tang, and X. Yang, J. Power Sources 253, 360 (2014).

    CAS  Google Scholar 

  43. E.C. Vermisoglou, E. Devlin, T. Giannakopoulou, G. Romanos, N. Boukos, V. Psycharis, C. Lei, C. Lekakou, D. Petridis, and C. Trapalis, J. Alloys Compd. 590, 102 (2014).

    CAS  Google Scholar 

  44. A. Śliwak, A. Moyseowicz, and G. Gryglewicz, J. Mater. Chem. A 5, 5680 (2017).

    Google Scholar 

  45. J. Schwarz, C. Contescu, and A. Contescu, Chem. Rev. 95, 477 (1995).

    CAS  Google Scholar 

  46. G.L. Viali, G.R. Gonçalves, E.C. Passamani, J.C.C. Freitas, M.A. Schettino Jr, A.Y. Takeuchi, and C. Larica, J. Magn. Magn. Mater. 401, 173 (2016).

    CAS  Google Scholar 

  47. S. Brunauer, P.H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).

    CAS  Google Scholar 

  48. S. Lowell, J.E. Schields, M.A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Dordrecht: Kluwer Academic, 2004).

    Google Scholar 

  49. Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, and Z. Luo, Carbon 45, 1686 (2007).

    CAS  Google Scholar 

  50. ICDD (2010). Powder Diffraction File Inorganic and Organic Data Book, edited by Dr. Soorya Kabekkodu (International Centre for Diffraction Data, Newtown Square, PA USA), Set 60.

  51. S. Chaudhari, D. Bhattacharjya, and J.-S. Yu, RSC Adv. 3, 25120 (2013).

    CAS  Google Scholar 

  52. A.K. Mishra and S. Ramaprabhu, J. Phys. Chem. C 115, 14006 (2011).

    CAS  Google Scholar 

  53. B.P. Prasanna, D.N. Avadhani, M.S. Raghu, and K. Yogesh Kumar, Mater. Today Commun. 12, 72 (2017).

    Google Scholar 

  54. K.K. Lee, S. Deng, H.M. Fan, S. Mhaisalkar, H.R. Tan, E.S. Tok, K.P. Loh, W.S. Chin, and C.H. Sow, Nanoscale 4, 2958 (2012).

    CAS  Google Scholar 

  55. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    CAS  Google Scholar 

  56. Y. Mateyshina, A. Ulihin, A. Samarov, C. Barnakov, and N. Uvarov, Solid State Ion. 251, 59 (2013).

    CAS  Google Scholar 

  57. J. Chen, J. Xu, S. Zhou, N. Zhao, and C. Wong, Nano Energy 15, 719 (2015).

    CAS  Google Scholar 

  58. S. Ghasemi and F. Ahmadi, J. Power Sources 289, 129 (2015).

    CAS  Google Scholar 

  59. Y.-G. Lin, Y.-K. Hsu, Y.-C. Lin, and Y.-C. Chen, Electrochim. Acta 216, 287 (2016).

    CAS  Google Scholar 

  60. D. Bellavance, J. Mikkelsen, and A. Wold, J. Solid State Chem. 2, 285 (1970).

    CAS  Google Scholar 

  61. Y. Zhang, H. Zhang, Y. Feng, L. Liu, and Y. Wang, ACS Appl. Mater. Interfaces 7, 26684 (2015).

    CAS  Google Scholar 

  62. J. Yang, Y. Ouyang, H. Zhang, H. Xu, Y. Zhang, and Y. Wang, J. Mater. Chem. A 4, 9923 (2016).

    CAS  Google Scholar 

  63. M. Liu, L. Yang, T. Liu, Y. Tang, S. Luo, C. Liu, and Y. Zeng, J. Mater. Chem. A 5, 8608 (2017).

    CAS  Google Scholar 

  64. K. Wang, J. Tan, Z. Lu, S. Chen, X. She, H. Zhang, and D. Yang, Int. J. Hydrogen Energy 43, 13939 (2018).

    CAS  Google Scholar 

  65. M. Yan, Y. Yao, J. Wen, W. Fu, L. Long, M. Wang, X. Liao, G. Yin, Z. Huang, and X. Chen, J. Alloys Compd. 641, 170 (2015).

    CAS  Google Scholar 

  66. K.B. Gandrud, O. Nilsen, and H. Fjellvåg, J. Power Sources 306, 454 (2016).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jair C. C. Freitas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuña, A., da Silva, E.L., Malfatti, C.F. et al. Porous Carbon-Based Nanocomposites Containing Fe2P Nanoparticles as Promising Materials for Supercapacitor Electrodes. J. Electron. Mater. 49, 1059–1074 (2020). https://doi.org/10.1007/s11664-019-07822-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07822-2

Keywords

Navigation