Skip to main content
Log in

Fluorescence Emission and Ferromagnetic of Zn0.97−xNi0.03CoxS Nanorods Synthesized via a Hydrothermal Route

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Wurtzite structure Ni and Co co-doped Zn0.97−xNi0.03CoxS (x = 0.01, 0.03 and 0.05) nanorods were successfully synthesized by a hydrothermal route with ethylenediamine. The effects of Co doping concentration on the crystal microstructure, morphology, optical and magnetic properties were systematically investigated by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectrometry (EDS), UV–visible spectra (UV–VIS), photoluminescence (PL) and a vibrating sample magnetometer (VSM). The morphology of as-prepared samples is one-dimensional wurtzite rod-like with good dispersion. It is demonstrated that the Ni and Co co-doped ZnS nanorods lead to an increased visible light absorption, slightly increased band gap, and decreased PL intensity. Blue shift of the band gap occurs in doped Zn0.97−xNi0.03CoxS nanorods. PL spectra shows an obvious ultraviolet emission peak at 375 nm and a weaker side band at 730 nm, implying the excellent single-phase ZnS. Notably, two major blue emissions band around 497 nm and 576 nm are quenched sharply with the increase of Co doping concentration. The CIE chromaticity diagram results show that the prepared Zn0.97−xNi0.03CoxS samples exhibit excellent light-emitting ability. All samples possess ferromagnetic behavior at room temperature. The saturation magnetization of Zn0.97−xNi0.03CoxS nanorods with an appropriate amount of Co decreases obviously, reaching a minimum at 3% Co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wang, Z. Chen, L. Zhang, M. Xu, G. Chen, B. Jiang, C. Ke, L. Zhang, and Y. Hang, J. Alloys Compd. 695, 3767 (2017).

    Article  Google Scholar 

  2. L. Liotta, F. Puleo, H. Wu, and X. Yin, J. Nanosci. Nanotechnol. 17, 3629 (2017).

    Article  Google Scholar 

  3. F. Wang, H. Yang, H. Zhang, and J. Jiang, J. Mater. Sci.: Mater. Electron. 29, 1304 (2018).

    Google Scholar 

  4. G.H. Yue, Y. Zhang, X.Q. Zhang, C.G. Wang, Y.C. Zhao, and D.L. Peng, Appl. Phys. A 118, 763 (2015).

    Article  Google Scholar 

  5. J. Jiang, X. He, J. Du, X. Pang, H. Yang, and Z. Wei, Mater. Lett. 220, 178 (2018).

    Article  Google Scholar 

  6. C. Zheng, H. Yang, Z. Cui, H. Zhang, and X. Wang, Nanoscale Res. Lett. 12, 608 (2017).

    Article  Google Scholar 

  7. M. Steger, K. Saeedi, M.L.W. Thewalt, J.J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, and H.-J. Pohl, Science 336, 1280 (2012).

    Article  Google Scholar 

  8. D.R. Khanal, J.W.L. Yim, W. Walukiewicz, and J. Wu, Nano Lett. 7, 1186 (2007).

    Article  Google Scholar 

  9. G.H. Yue, X. Wang, L.S. Wang, P. Chang, R.T. Wen, Y.Z. Chen, and D.L. Deng, Electrochim. Acta 54, 26 (2009).

    Google Scholar 

  10. G.H. Yue, W. Wang, L.S. Wang, X. Wang, P.X. Yan, Y. Chen, and D.L. Peng, J. Alloys Compd. 474, 1–2 (2009).

    Article  Google Scholar 

  11. G.H. Yue, D.L. Deng, P.X. Yan, L.S. Wang, W. Wang, and X.H. Luo, J. Alloys Compd. 468, 1–2 (2009).

    Article  Google Scholar 

  12. G.H. Yue, P.X. Yan, D. Yan, J.Z. Liu, D.M. Qu, Q. Yang, and X.Y. Fan, J. Cryst. Growth 293, 2 (2006).

    Article  Google Scholar 

  13. Z. Dehghani, Z. Shadrokh, and M. Nadafan, Opt. Int. J. Light Electron Opt. 131, 925 (2017).

    Article  Google Scholar 

  14. D. Cai, X. Yuan, D. Zhu, H. Zhou, H. Li, and J. Zhao, Mater. Res. Bull. 94, 241 (2017).

    Article  Google Scholar 

  15. L.-J. Tang, G.-F. Huang, Y. Tian, W.-Q. Huang, M.-G. Xia, C. Jiao, J.-P. Long, and S.-Q. Zhan, Mater. Lett. 100, 237 (2013).

    Article  Google Scholar 

  16. D. Amaranatha Reddy, D.H. Kim, S.J. Rhee, C.U. Jung, B.W. Lee, and C. Liu, J. Alloys Compd. 588, 596 (2014).

    Article  Google Scholar 

  17. B. Poornaprakash, P.T. Poojitha, U. Chalapathi, S. Ramu, R.P. Vijayalakshmi, and S.-H. Park, Ceram. Int. 42, 8092 (2016).

    Article  Google Scholar 

  18. B. Poornaprakash, S. Ramu, S.-H. Park, R.P. Vijayalakshmi, and B.K. Reddy, Mater. Lett. 164, 104 (2016).

    Article  Google Scholar 

  19. T. Arai, S. Senda, Y. Sato, H. Takahashi, K. Shinoda, B. Jeyadevan, and K. Tohji, Chem. Mater. 20, 1997 (2008).

    Article  Google Scholar 

  20. D.A. Reddy, G. Murali, R.P. Vijayalakshmi, and B.K. Reddy, Appl. Phys. A 105, 119 (2011).

    Article  Google Scholar 

  21. D. Amaranatha Reddy, S. Sambasivam, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, Y. Aparna, B.K. Reddy, and J.L. Rao, J. Alloys Compd. 537, 208 (2012).

    Article  Google Scholar 

  22. G. Murugadoss, J. Lumin. 132, 2043 (2012).

    Article  Google Scholar 

  23. B. Poornaprakash, P.T. Poojitha, U. Chalapathi, K. Subramanyam, and S.-H. Park, Phys. E Low-Dimens. Syst. Nanostruct. 83, 180 (2016).

    Article  Google Scholar 

  24. M. Kimi, L. Yuliati, and M. Shamsuddin, J. Energy Chem. 25, 512 (2016).

    Article  Google Scholar 

  25. L. Ma and W. Chen, Nanotechnology 21, 385604 (2010).

    Article  Google Scholar 

  26. G. Roussos, J. Nagel, and H.-J. Schulz, Z. Für Phys. B Condens. Matter 53, 95 (1983).

    Article  Google Scholar 

  27. D. Gao, G. Yang, J. Zhang, Z. Zhu, M. Si, and D. Xue, Appl. Phys. Lett. 99, 052502 (2011).

    Article  Google Scholar 

  28. N.H. Hong, E. Chikoidze, and Y. Dumont, Phys. B Condens. Matter 404, 3978 (2009).

    Article  Google Scholar 

  29. M. Kapilashrami, J. Xu, V. Ström, K.V. Rao, and L. Belova, Appl. Phys. Lett. 95, 033104 (2009).

    Article  Google Scholar 

  30. W.-H. Zhao, Z.-Q. Wei, X.-L. Zhu, X.-D. Zhang, and J.-L. Jiang, Int. J. Mater. Res. 109, 405 (2018).

    Article  Google Scholar 

  31. G.H. Yue, P.X. Yan, D. Yan, J.Z. Liu, D.M. Qu, Q. Yang, and X.Y. Fan, J. Cryst. Growth 293, 428 (2006).

    Article  Google Scholar 

  32. Z. Deng, J. Qi, Y. Zhang, Q. Liao, and Y. Huang, Nanotechnology 18, 475603 (2007).

    Article  Google Scholar 

  33. S. Kar and S. Chaudhuri, Chem. Phys. Lett. 414, 40 (2005).

    Article  Google Scholar 

  34. X. Wang, J. Shi, Z. Feng, M. Li, and C. Li, Phys. Chem. Chem. Phys. 13, 4715 (2011).

    Article  Google Scholar 

  35. J.F. Suyver, S.F. Wuister, J.J. Kelly, and A. Meijerink, Nano Lett. 1, 429 (2001).

    Article  Google Scholar 

  36. X. Zhang, Y. Zhang, Y. Song, Z. Wang, and D. Yu, Phys. E Low-Dimens. Syst. Nanostruct. 28, 1 (2005).

    Article  Google Scholar 

  37. Y.-C. Zhu, Y. Bando, and D.-F. Xue, Appl. Phys. Lett. 82, 1769 (2003).

    Article  Google Scholar 

  38. G. Shen, Y. Bando, and D. Golberg, Appl. Phys. Lett. 88, 123107 (2006).

    Article  Google Scholar 

  39. S.S. Talwatkar, A.L. Sunatkari, Y.S. Tamgadge, V.G. Pahurkar, and G.G. Muley, Appl. Phys. A 118, 675 (2015).

    Article  Google Scholar 

  40. S.-F. Wang, G.-Z. Sun, L.-M. Fang, L. Lei, X. Xiang, and X.-T. Zu, Sci. Rep. 5, 12849 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51261015) and the open funds of State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology (No. SYSJJ2018-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Q. Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W.H., Wei, Z.Q., He, Y.J. et al. Fluorescence Emission and Ferromagnetic of Zn0.97−xNi0.03CoxS Nanorods Synthesized via a Hydrothermal Route. J. Electron. Mater. 48, 6807–6814 (2019). https://doi.org/10.1007/s11664-019-07504-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07504-z

Keywords

Navigation