Skip to main content
Log in

Thermoelectric Generator for Utilizing Cold Energy of Cryogen Liquids

  • Progress and Challenges for Emerging Integrated Energy Modules
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, the results of experimental studies of a prototype cryogenic thermoelectric generator (TEG) using transit heat flows in a liquefied natural gas (LNG) evaporator are considered. The main objective was to develop a TEG with low capital cost, integrated directly into an LNG vaporizer, capable of generating electricity at a reasonable levelized cost (LCOE). A demonstration prototype of TEG was created with a power output of 800 W. The prototype used liquid nitrogen (LN2) instead of LNG as the working fluid. Achieved technical parameters of TEG provide the LCOE decrease to a level of ≈ 0.015 $/kWh. Such results are achieved using standard components (thermoelectric modules, heat exchangers, etc.) thanks to the optimization of the TEG design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

I :

Electrical current (A)

J :

Dimensionless current density

e :

Seebeck coefficient (V/K)

E :

Electromotive force (V)

λ :

Thermal conductivity (W/cm-K)

σ :

Electrical conductivity (Ω cm)−1

h :

Thermocouple leg length (cm)

n :

Number of thermoelectric elements or modules

N :

Electrical power (W)

s :

Thermoelectric leg cross sectional area (cm2)

T o :

Determining temperature (K)

T h :

Hot junction temperature (K)

T c :

Cold junction temperature (K)

ΔT :

Junction temperature difference (K)

t h :

Heat carrier temperature (K)

t c :

Coolant temperature (K)

Δt :

Temperature difference of heat carriers (K)

Θ = T/T o :

Dimensionless temperature

ϑ = t/T o :

Dimensionless temperature of fluid

z :

Thermoelectric figure-of-merit (K−1)

zT o :

Dimensionless thermoelectric figure-of-merit

Q :

Heat power flow (W)

η :

Efficiency

η c :

Carnot efficiency

α :

Heat transfer coefficient (W/cm2 K)

R α , R λ :

Thermal resistance (cm2 K/W)

R :

Electrical resistance (Ω)

R L :

Electrical load resistance (Ω)

m = R L/R :

Load factor

LCOE:

Levelized cost of electricity ($/kWh)

Bi :

Biot criterion

Nu :

Nusselt criterion

Re :

Reynolds criterion

Pr :

Prandtl criterion

References

  1. World LNG Report. https://www.igu.org/news/2018-world-lng-report.

  2. Cryogenic power generation system recovering LNG’s cryogenic energy and generating power for energy and CO2 emission savings. http://www.osakagas.co.jp/en/rd/technical/1198907_6995.html.

  3. Plan for the installation of a Power plant using LNG cold Energy at an LNG terminal. http://members.igu.org/html/wgc2003/.

  4. H. Dhameliya and P. Agrawal, Energy Procedia 90, 660 (2016).

    Article  Google Scholar 

  5. B. Kanbur, L. Xiang, S. Dubey, F. Choo, and F. Duan, Energy Procedia 105, 1902 (2017).

    Article  Google Scholar 

  6. F. Xue, Y. Chen, Y. Ju, Energy 10(3), 363 (2016). https://doi.org/10.1007/s11708-016-0397-7.

  7. M. Astolfia, A. Fantolini, G. Valenti, S. De Rinaldis, L. Inglese, and E. Macchi, Energy Procedia 129, 42 (2017).

    Article  Google Scholar 

  8. M. Kambe, R. Morita, K. Omoto, Y. Koji, T. Yoshida, and K. Noishiki, Power Energy Syst. 2, 1304 (2008).

    Article  Google Scholar 

  9. E. Jeong, Cryogenics 88, 29 (2017).

    Article  Google Scholar 

  10. C.-C. Weng, M.-C. Lin, and M.-J. Huang, Energy 103, 385 (2016).

    Article  Google Scholar 

  11. W. Sun, P. Hu, Z. Chen, and L. Jia, Energy Convers. Manag. 46, 789 (2005).

    Article  Google Scholar 

  12. Y. Zhao, S. Wang, and Y. Li, Energy Procedia 105, 1932 (2017).

    Article  Google Scholar 

  13. S. Sivapurapu, Preliminary Design of a Cryogenic Thermoelectric Generator (Denton: Univ. of North Texas, 2007).

    Google Scholar 

  14. J. Lian, B. Xia, Y.Yin, G. Yang, Y. Yang, X. Gou, E. Wang, L. Liu, J. Wu, in 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015), 282 (2015).

  15. Y. Lobunets, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-06943-y.

  16. Y.M. Lobunets, Thermoelectricity 2, 65 (2014).

    Google Scholar 

  17. http://kryothermtec.com/ru/kryotherm-software.html.

  18. M. Mikheev, The Basics of Heat Transfer (1956).

  19. G. Ma, C. Zhang, and L. Zhao, Adv. Mech. Eng. 9, 1 (2017).

    Google Scholar 

  20. D. Chen and Y. Shi, Cryogenics 57, 18 (2013).

    Article  Google Scholar 

  21. P. Ardhapurkar, A. Sridharan, and M. Atrey, Cryogenics 59, 84 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Science Foundation under Award Number #1722127, SBIR Phase I: Integrated Thermoelectric Heat Exchanger (iTEG-HX) for Carbon Neutral Electricity Production through Recovery of Cold Energy from Regasification of LNG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Lobunets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobunets, Y. Thermoelectric Generator for Utilizing Cold Energy of Cryogen Liquids. J. Electron. Mater. 48, 5491–5496 (2019). https://doi.org/10.1007/s11664-019-07392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07392-3

Keywords

Navigation