Skip to main content
Log in

Sodium Doping Effect on Optical Permittivity, Band Gap Structure, Nonlinearity and Piezoelectric Properties of PZT Nano-colloids and Nanostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this research, effects of sodium atoms doping on optical properties of lead zirconate titanate (PZT) nanoparticles (NPs) are studied and compared with undoped particles. Analyses show formations of PZT nanostructures with dimensions below 30 nm. X-ray diffraction patterns show that the particle size increases and the intensity of the preferred direction decreases as the doping sodium atoms are used in the structure. Analyzing absorption spectra of the colloidal solutions shows doped particles are better absorbers at violet-green region of spectra. Also, it has been concluded that PZT NPs only have indirect optical band gap that is narrower for doped particles. Optical permittivity of the films has been compared using a numerical method and shows the prominent effect of doping on real and imaginary parts of permittivity. Also, z-scan experiments have been done to measure thermo-optical and nonlinear absorption coefficients of the nano-colloids using continue wave Nd-YAG laser illumination. Finally, sodium doping effects on piezoelectric properties of the samples are investigated using a Michelson interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Morita, Materials 3, 5236 (2010).

    Article  Google Scholar 

  2. K. Raju and P. Venugopal Reddy, Curr. Appl. Phys. 10, 31 (2010).

    Article  Google Scholar 

  3. W. Madhuri, M. Penchal Reddy, N. Rammanohar Reddy, K.V. Siva Kumar, and V.R.K. Murthy, J. Phys. D Appl. Phys. 42, 165007 (2007).

    Article  Google Scholar 

  4. M. Ghasemifard, S.M. Hosseini, M.M. Bagheri-Mohagheghi, and N. Shahtahmasbi, Physica E 41, 1701 (2009).

    Article  Google Scholar 

  5. A. Khorsand Zak and W.H. Abd. Majid, Ceram. Int. 36, 1905 (2010).

    Article  Google Scholar 

  6. M. Ghasemifard, S.M. Hosseini, A. Khorsand Zak, and GhH Khorrami, Physica E 41, 418 (2009).

    Article  Google Scholar 

  7. Y. Deng, L. Liu, Y. Cheng, C.W. Nan, and S.J. Zhao, Mater. Lett. 57, 1675 (2003).

    Article  Google Scholar 

  8. G.H. Khorrami, A. Khorsand Zak, and S.M. Banihashemian, Adv. Powder Technol. 25, 1319 (2004).

    Article  Google Scholar 

  9. V. Kalem, I. Cam, and M. Timucin, Ceram. Int. 37, 1265 (2011).

    Article  Google Scholar 

  10. G.H. Khorrami, A. Khorsand Zak, A. Kompany, and R. Yousefi, Ceram. Int. 38, 5683 (2012).

    Article  Google Scholar 

  11. I.A. Garduno, J.C. Alonso, M. Bizarro, R. Ortega, L. Rodriguez-Fernandez, and A. Ortiz, J. Cryst. Growth 312, 3276 (2010).

    Article  Google Scholar 

  12. W.L. Jang, Y.M. Lu, W.S. Hwang, and W.C. Chen, J. Eur. Ceram. Soc. 30, 503 (2010).

    Article  Google Scholar 

  13. D.K. Mahato and R.K. Chaudhary, J. Mater. Sci. Lett. 22, 1613 (2003).

    Article  Google Scholar 

  14. A. Bouzid, M. Gabbay, and G. Fantozzi, Defect Diffus. Forum 206, 147 (2002).

    Article  Google Scholar 

  15. E. Koushki, S.H. Mousavi, S.A. Jafari Mohammadi, M.H. Majles Ara, and P.W. deOliveira, Thin Solid Films 592, 81 (2015).

    Article  Google Scholar 

  16. E. Koushki, S.H. Mousavi, and J. Baedi, Optik 127, 4635 (2016).

    Article  Google Scholar 

  17. A. Monshi, M.R. Foroughi, and M.R. Monshi, World J. Nano Sci. Eng. 2, 154 (2012).

    Article  Google Scholar 

  18. Y.R. Park and K.J. Kim, J. Cryst. Growth 258, 380 (2003).

    Article  Google Scholar 

  19. C.S. Lee, K.A. Matori, S.H. Ab Aziz, H.M. Kamari, I. Ismail, and M.H. Mohd Zaid, Optik 136, 129 (2017).

    Article  Google Scholar 

  20. S. Lakshmana Perunal, P. Hemalatha, M. Alagara, and K. Navaneetha Pandiyaraj, Int. J. Chem. Phys. Sci. 4, 1 (2015).

    Google Scholar 

  21. R. Kripal and R.K. Srivastava, Spectro Chem. Acta part A 79, 1605 (2011).

    Article  Google Scholar 

  22. A. Tasbandi, E. Koushki, and H. Eshghi, Opt. Quant. Electron. 49, 124 (2017).

    Article  Google Scholar 

  23. H. Azimi Juybari, M.M. Bagheri-Mohagheghi, and M. Shokooh-Saremi, J. Alloys Compd. 509, 2770 (2011).

    Article  Google Scholar 

  24. J. Wei, Nonlinear Performance and Characterization Methods in Optics (New York: Nova Publisher, 2013), pp. 41–67.

    Google Scholar 

  25. S. Alikhani, H. Tajalli, and E. Koushki, Opt. Commun. 286, 318 (2013).

    Article  Google Scholar 

  26. Z. Huang, Q. Zhang, S. Corkovic, R.A. Dorey, F. Duval, G. Leighton, R. Wright, P. Kirby, and R.W. Whatmore, J. Electroceram. 17, 549 (2006).

    Article  Google Scholar 

  27. F.L. Pedrotti and L.S. Pedrotti, Introduction to Optics, 2nd ed. (Saddle River: Prentice Hall, 1993), pp. 225–230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Koushki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koushki, E., Baedi, J. & Tasbandi, A. Sodium Doping Effect on Optical Permittivity, Band Gap Structure, Nonlinearity and Piezoelectric Properties of PZT Nano-colloids and Nanostructures. J. Electron. Mater. 48, 1066–1073 (2019). https://doi.org/10.1007/s11664-018-6834-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6834-0

Keywords

Navigation