Skip to main content
Log in

Microwave Dielectric Properties of Na5RE(MoO4)4 (RE = La, Gd, Dy, Er) Ceramics with a Low Sintering Temperature

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Na5RE(MoO4)4 (RE = La, Gd, Dy, Er) ceramics have been synthesized by the conventional solid-state reaction method. The crystallizations, microstructures and microwave dielectric properties of Na5RE(MoO4)4 ceramics were also investigated. The room-temperature x-ray diffraction patterns of Na5RE (MoO4)4 ceramics illustrate a tetragonal structure with a I 41/a space group. The grain size of Na5La(MoO4)4 is larger than that of Na5RE(MoO4)4 (RE = Gd, Dy, Er) ceramics, and uneven grains are observed in the systems. Na5RE (MoO4)4 ceramics sintered at 570–690°C for 4 h possess excellent microwave dielectric properties with εr = 6.4–8.4, τf = − 27.7–34.3 ppm/°C, and Q × f = 4073–24411 GHz at their optimum sintering temperature. The nonreactivity of Na5Er(MoO4)4 with silver is evidenced by x-ray diffraction, and SEM and EDS analysis reveal that silver can be a co-firable electrode material for the present ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fang, D. Chu, H. Zhou, X. Chen, H. Zhang, B. Chang, C. Li, Y. Qin, and X. Huang, J. Alloys Compd. 509, 8840 (2011).

    Article  Google Scholar 

  2. H. Yang, Y. Lin, J. Zhu, F. Wang, and Z. Dai, J. Alloys Compd. 502, L20 (2010).

    Article  Google Scholar 

  3. R. Umemura, H. Ogawa, and A. Kan, J. Eur. Ceram. Soc. 26, 2063 (2006).

    Article  Google Scholar 

  4. S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, J. Am. Ceram. Soc. 66, 421 (1983).

    Article  Google Scholar 

  5. K.P. Surendran, N. Santha, P. Mohanan, and M.T. Sebastian, Eur. Phys. J. B 41, 301 (2004).

    Article  Google Scholar 

  6. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, and D. Suvorov, J. Am. Ceram. Soc. 89, 3441 (2006).

    Article  Google Scholar 

  7. W. Lei, W.Z. Lu, D. Liu, and J.H. Zhu, J. Am. Ceram. Soc. 92, 105 (2009).

    Article  Google Scholar 

  8. Y.I. Sohn, J. Inaguma, S.O. Yoon, M. Itoh, T. Nakamura, S.J. Yoon, and H.J. Kim, Jpn. J. Appl. Phys. 33, 5466 (1994).

    Article  Google Scholar 

  9. X. Chou, J. Zhai, and X. Yao, Appl. Phys. Lett. 91, 122908 (2007).

    Article  Google Scholar 

  10. M.M. Mao, X.C. Fan, and X.M. Chen, Int. J. Appl. Ceram. Technol. 7, E156 (2010).

    Article  Google Scholar 

  11. D. Zhou, L.X. Pang, J. Guo, G.Q. Zhang, Y. Wu, H. Wang, and X. Yao, J. Eur. Ceram. Soc. 31, 2749 (2011).

    Article  Google Scholar 

  12. J. Dhanya, A.V. Basiluddeen, and R. Ratheesh, Scr. Mater. 132, 1 (2017).

    Article  Google Scholar 

  13. L.X. Pang, H. Liu, D. Zhou, G.B. Sun, W.-G. Qin, and W.G. Liu, Mater. Lett. 72, 128 (2012).

    Article  Google Scholar 

  14. V.A. Morozov, B.I. Lazoryak, S.Z. Shmurak, A.P. Kiselev, O.I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, Chem. Mater. 26, 3238 (2014).

    Article  Google Scholar 

  15. D. Zhou, C.A. Randall, L.-X. Pang, H. Wang, J. Guo, G.-Q. Zhang, Y. Wu, K.-T. Guo, L. Shui, and X. Yao, Mater. Chem. Phys. 129, 688 (2011).

    Article  Google Scholar 

  16. Z. Wang, C. Yuan, Q. Li, Q. Feng, F. Liu, C. Zhou, G. Chen, and G. Rao, J. Mater. Sci. Mater. Electron. 28, 9941 (2017).

    Article  Google Scholar 

  17. C. Guo, F. Gao, Y. Xu, L. Liang, F.G. Shi, and B. Yan, J. Phys. D Appl. Phys. 42, 095407 (2009).

    Article  Google Scholar 

  18. J. Dhanya, E. Kalathil Suresh, R. Naveenraj, and R. Ratheesh, Ceram. Int. 44, 6699 (2018).

    Article  Google Scholar 

  19. S. Parida, S.K. Rout, L.S. Cavalcante, E. Sinha, M.S. Li, V. Subramanian, N. Gupta, V.R. Gupta, J.A. Varela, and E. Longo, Ceram. Int. 38, 2129 (2012).

    Article  Google Scholar 

  20. D. Zhou, C.A. Randall, L.X. Pang, H. Wang, J. Guo, G.Q. Zhang, X.G. Wu, L. Shui, and X. Yao, J. Am. Ceram. Soc. 94, 348 (2011).

    Article  Google Scholar 

  21. L.X. Pang, G.B. Sun, and D. Zhou, Mater. Lett. 65, 164 (2011).

    Article  Google Scholar 

  22. K.H. Yoon, W.S. Kim, and E.S. Kim, Mater. Sci. Eng. B 99, 112 (2003).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (Grant No. 11464006) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlai Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Yuan, C., Zhu, B. et al. Microwave Dielectric Properties of Na5RE(MoO4)4 (RE = La, Gd, Dy, Er) Ceramics with a Low Sintering Temperature. J. Electron. Mater. 48, 656–661 (2019). https://doi.org/10.1007/s11664-018-6775-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6775-7

Keywords

Navigation