Skip to main content
Log in

Thermoelectric Properties of Co- and Mn-Doped Al2Fe3Si3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Al2Fe3Si3 is a promising semiconductor for application as an environmentally friendly thermoelectric material. Its intrinsic carrier concentration is 5 × 1019 cm−3 and shows p-type conduction. In this article, we report on the thermoelectric properties of carrier-doped Al2Fe3Si3. Co or Mn was substituted for Fe for electron or hole doping, respectively. Al2Fe3−xMxSi3 (M=Co or Mn; x = 0.1–1.0 for Co and 0.1–0.3 for Mn) samples were synthesized by arc melting followed by spark plasma sintering and heat treatment. The Co- and Mn-doped samples displayed Hall carrier concentrations of 1.4 × 1020 cm−3 to 5.1 × 1020 cm−3 for n-type and 1.3 × 1020 cm−3 to 1.3 × 1021 cm−3 for p-type conduction. The n-type Al2Fe3Si3 exhibited a higher absolute value of Seebeck coefficient and lower Hall carrier mobility than p-type Al2Fe3Si3 at the same carrier concentration. The power factor increased with increasing carrier concentration for n-type conduction, and reached 0.65 × 10−3 W/mK at 520 K. On the other hand, the power factor for p-type Al2Fe3Si3 was not enhanced with increasing carrier concentration. The maximum ZT value for Co-substituted Al2Fe3Si3 was 0.09 at 600 K, which is 50% higher than that of pure Al2Fe3Si3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chemie Int. 48, 8616 (2009).

    Article  Google Scholar 

  3. J. He and T.M. Tritt, Science 357, eaak9997 (2017).

    Article  Google Scholar 

  4. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  Google Scholar 

  5. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  Google Scholar 

  6. Y. Takagiwa, Y. Isoda, M. Goto, and Y. Shinohara, J. Therm. Anal. Calorim. 131, 281 (2018).

    Article  Google Scholar 

  7. Y. Shiota, H. Muta, K. Yamamoto, Y. Ohishi, K. Kurosaki, and S. Yamanaka, Intermetallics 89, 51 (2017).

    Article  Google Scholar 

  8. Y. Takagiwa, Y. Isoda, M. Goto, and Y. Shinohara, J. Phys. Chem. Solids 118, 95 (2018).

    Article  Google Scholar 

  9. S. Lee, B. Kim, and S. Lee, Mater. Trans. 52, 1308 (2011).

    Article  Google Scholar 

  10. M.C.J. Marker, B. Skolyszewska-Kühberger, H.S. Effenberger, C. Schmetterer, and K.W. Richter, Intermetallics 19, 1919 (2011).

    Article  Google Scholar 

  11. L. Pauling, J. Am. Chem. Soc. 69, 542 (1947).

    Article  Google Scholar 

  12. A.L. Allred and E.G. Rochow, J. Inorg. Nucl. Chem. 5, 264 (1958).

    Article  Google Scholar 

  13. T.I. Yanson, M.B. Manyako, O.I. Bodak, N.V. German, O.S. Zarechnyuk, R. Cerný, J.V. Pacheco, and K. Yvon, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 52, 2964 (1996).

    Article  Google Scholar 

  14. C.B. Vining, J. Appl. Phys. 69, 331 (1991).

    Article  Google Scholar 

  15. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  16. P.G. Klemens, Phys. Rev. 119, 507 (1960).

    Article  Google Scholar 

  17. J. Callaway and H.C. von Baeyer, Phys. Rev. 120, 1149 (1960).

    Article  Google Scholar 

  18. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Kansai Research Foundation for technology promotion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Muta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiota, Y., Yamamoto, K., Ohishi, Y. et al. Thermoelectric Properties of Co- and Mn-Doped Al2Fe3Si3. J. Electron. Mater. 48, 475–482 (2019). https://doi.org/10.1007/s11664-018-6735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6735-2

Keywords

Navigation