Skip to main content

Advertisement

Log in

Effects of System Design on Fatigue Life of Solder Joints in BGA Packages Under Vibration at Random Frequencies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fatigue life predictions for ball grid arrays (BGA) in electronic devices under random vibration have been made using the finite element method (FEM). Three different circuit board configurations were investigated to determine the best system design for longer fatigue lifetime. Moreover, to reveal the effect of the input frequency, different acceleration power spectral density (PSD) values were applied to the systems. The root-mean-square peeling stress was selected as the failure indicator. FEM results showed that the maximum peeling stress occurred at the outermost corners of solder joints adjacent to the printed circuit board in BGA packages. It was also found that, with increase in the input PSD, solder joints in BGA packages were more exposed to failure. Furthermore, it was revealed that the location of different parts of the system on the board can influence the stress distribution. The results show that a system with a heat sink at the corner of the board, away from the BGA packages, showed the longest fatigue life among the designed configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Perkins and S.K. Sitaraman, editors, Solder Joint Reliability Prediction for Multiple Environments (Springer US, Boston, MA, 2009), pp. 1–22

  2. J. Xia, L. Cheng, G. Li, and B. Li, Microelectron. Reliab. 78, 285 (2017).

    Article  CAS  Google Scholar 

  3. M.S. Kang, Y.J. Jeon, D.S. Kim, and Y.E. Shin, Int. J. Precis. Eng. Manuf. 16, 2483 (2015).

    Article  Google Scholar 

  4. V. Samavatian, H. Iman-eini, and Y. Avenas, Int. J. Fatigue 116, 284 (2018).

    Google Scholar 

  5. J. Jang, G. Jang, J. Lee, Y. Cho, and Y. Cinar, Int. J. Fatigue 88, 42 (2016).

    Article  Google Scholar 

  6. F. Liu, Y. Lu, Z. Wang, and Z. Zhang, Microelectron. Reliab. 55, 2777 (2015).

    Article  Google Scholar 

  7. D. Ghaderi, M. Pourmahdavi, V. Samavatian, O. Mir, and M. Samavatian, in Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 1464420718780525 (2018).

  8. T.Y. Tsai, C.L. Yeh, Y.S. Lai, and R.S. Chen, IEEE Trans. Electron. Packag. Manuf. 30, 54 (2007).

    Article  Google Scholar 

  9. Y. Cinar and G. Jang, J. Mech. Sci. Technol. 28, 107 (2014).

    Article  Google Scholar 

  10. J. Xia, G. Li, B. Li, L. Cheng, and B. Zhou, Microelectron. Reliab. 71, 111 (2017).

    Article  Google Scholar 

  11. L.S. Han, C.Y. Huang, R. Yin, L. Ying, G. x. Huang, and T.M. Li, in 2017 18th Int. Conf. Electron. Packag. Technol. (2017), pp. 632–638

  12. J.H. Lee and H.-Y. Jeong, Int. J. Fatigue 61, 264 (2014).

    Article  Google Scholar 

  13. M. Jannoun, Y. Aoues, E. Pagnacco, P. Pougnet, and A. El-Hami, Microelectron. Reliab. 78, 249 (2017).

    Article  CAS  Google Scholar 

  14. C. Choi and A. Dasgupta, Procedia Eng. 74, 165 (2014).

    Article  CAS  Google Scholar 

  15. C.-U. Kim, W.-H. Bang, H. Xu, and T.-K. Lee, JOM 65, 1362 (2013).

    Article  CAS  Google Scholar 

  16. Y. Chen, B. Jing, Z. Sheng, F. Lu, J. Hu, and S. Si, in 2017 Progn. Syst. Heal. Manag. Conf. (2017), pp. 1–5

  17. N. Patin, in edited by N. B. T.-P. E. A. to I. S. and T. Patin, Power Electronics Applied to Industrial Systems and Transports, Vol. 1 (Elsevier, 2015), pp. 117–135.

  18. G. Schmid, L.G. Valladares-Rendón, T.-H. Yang, and S.-L. Chen, Appl. Therm. Eng. 125, 575 (2017).

    Article  Google Scholar 

  19. M. Mihalis, US6778390B2 (2001).

  20. A. Letellier, M. Dubois, J.P.F. Trovao, and H. Maher, IEEE Trans. Power Electron. 1 (2018).

  21. U.M. Choi, F. Blaabjerg, and S. J⊘rgensen, in 2016 IEEE Energy Convers. Congr. Expo. (2016), pp. 1–7

  22. F. Liu, G. Meng, M. Zhao, and J. Zhao, J. Electron. Packag. 130, 21006 (2008).

    Article  Google Scholar 

  23. J.H.L. Pang, F.L. Wong, K.T. Heng, Y.S. Chua, and C.E. Long, in 2013 IEEE 63rd Electron. Components Technol. Conf. (2013), pp. 1300–1307

  24. R.F. Fang Liu, Adv. Vib. Eng. 12, 489 (2013).

    Google Scholar 

  25. F. Liu and G. Meng, Microelectron. Reliab. 54, 226 (2014).

    Article  CAS  Google Scholar 

  26. F.X. Che and J.H.L. Pang, Microelectron. Reliab. 49, 754 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Samavatian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samavatian, M., Ilyashenko, L.K., Surendar, A. et al. Effects of System Design on Fatigue Life of Solder Joints in BGA Packages Under Vibration at Random Frequencies. J. Electron. Mater. 47, 6781–6790 (2018). https://doi.org/10.1007/s11664-018-6600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6600-3

Keywords