Skip to main content
Log in

Structural and Electrical Properties of Ga2O3 Films Deposited under Different Atmospheres by Pulsed Laser Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of oxygen and nitrogen pressure on the structural and electrical properties of crystalline β-Ga2O3 films grown by pulsed laser deposition were investigated. We found that varying the oxygen pressure from 1 × 10−4 Pa to 1 × 10−1 Pa changed the resistivity from the order of 102–103 Ω cm. Adjusting the nitrogen pressure from 1 × 10−4 Pa to 1 × 10−1 Pa increased the resistivity from the order of 104–105 Ω cm. Oxygen and nitrogen pressures in the range from 1 × 10−4 Pa to 1 × 10−1 Pa had no obvious influence on the crystal quality, surface morphology, or transmittance of the β-Ga2O3 films grown at 500°C on sapphire substrates. All the films showed a (− 201) oriented monoclinic structure with smooth surfaces and high transmittance. The obtained β-Ga2O3 films have potential for applications in thin film resistors for monolithic microwave integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-Y. Huang, R.-H. Horng, D.-S. Wuu, L.-W. Tu, and H.-S. Kao, Appl. Phys. Lett. 102, 011119 (2013).

    Article  Google Scholar 

  2. N.M. Sbrockey, T. Salagaj, E. Coleman, G.S. Tompa, Y. Moon, and M.S. Kim, J. Electron. Mater. 44, 1357 (2014).

    Article  Google Scholar 

  3. L. Binet and D. Gourier, J. Phys. Chem. Solids 59, 1241 (1998).

    Article  CAS  Google Scholar 

  4. Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, Appl. Phys. Lett. 90, 031912 (2007).

    Article  Google Scholar 

  5. T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, Appl. Phys. Express 1, 011202 (2008).

    Article  Google Scholar 

  6. M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett. 77, 4166 (2000).

    Article  CAS  Google Scholar 

  7. M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, Thin Solid Films 411, 134 (2002).

    Article  CAS  Google Scholar 

  8. M. Ogita, K. Higo, Y. Nakanishi, and Y. Hatanaka, Appl. Surf. Sci. 175–176, 721 (2001).

    Article  Google Scholar 

  9. J.-T. Yan and C.-T. Lee, Sens. Actuators B Chem. 143, 192 (2009).

    Article  Google Scholar 

  10. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Phys. Status Solidi (a) 211, 21 (2014).

    Article  CAS  Google Scholar 

  11. M. Fleischer, W. Hanrieder, and H. Meixner, Thin Solid Films 190, 93 (1990).

    Article  CAS  Google Scholar 

  12. L. Jianjun, Y. Jinliang, S. Liang, and L. Ting, J. Semicond. 31, 103001 (2010).

    Article  Google Scholar 

  13. D. Shinohara and S. Fujita, Jpn. J. Appl. Phys. 47, 7311 (2008).

    Article  CAS  Google Scholar 

  14. A. Ortiz, J.C. Alonso, E. Andrade, and C. Urbiola, J. Electrochem. Soc. 148, F26 (2001).

    Article  CAS  Google Scholar 

  15. T. Oshima, T. Okuno, and S. Fujita, Jpn. J. Appl. Phys. 46, 7217 (2007).

    Article  CAS  Google Scholar 

  16. H. Hayashi, R. Huang, F. Oba, T. Hirayama, and I. Tanaka, J. Mater. Res. 26, 578 (2011).

    Article  CAS  Google Scholar 

  17. K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 496, 37 (2006).

    Article  CAS  Google Scholar 

  18. M.J. Aziz, Appl. Phys. A 93, 579 (2008).

    Article  CAS  Google Scholar 

  19. N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997).

    Article  CAS  Google Scholar 

  20. F. Zhang, M. Arita, X. Wang, Z. Chen, K. Saito, T. Tanaka, M. Nishio, T. Motooka, and Q. Guo, Appl. Phys. Lett. 109, 102105 (2016).

    Article  Google Scholar 

  21. S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, and I. Tanaka, J. Phys. Condens. Matter 19, 346211 (2007).

    Article  Google Scholar 

  22. E. Millon, Appl. Surf. Sci. 278, 2 (2013).

    Article  CAS  Google Scholar 

  23. A. Petitmangin, C. Hébert, J. Perrière, B. Gallas, L. Binet, P. Barboux, and P. Vermaut, J. Appl. Phys. 109, 013711 (2011).

    Article  Google Scholar 

  24. A. Petitmangin, B. Gallas, C. Hebert, J. Perrière, L. Binet, P. Barboux, and X. Portier, Appl. Surf. Sci. 278, 153 (2013).

    Article  CAS  Google Scholar 

  25. C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, Mater. Chem. Phys. 133, 135 (2012).

    Article  CAS  Google Scholar 

  26. Y. Zhang, J. Yan, Q. Li, C. Qu, L. Zhang, and T. Li, Phys. B 406, 3079 (2011).

    Article  CAS  Google Scholar 

  27. Y.P. Song, H.Z. Zhang, C. Lin, Y.W. Zhu, G.H. Li, F.H. Yang, and D.P. Yu, Phys. Rev. B 69, 075304 (2004).

    Article  Google Scholar 

  28. L.-W. Chang, T.-Y. Lu, Y.-L. Chen, J.-W. Yeh, and H.C. Shih, Mater. Lett. 65, 2281 (2011).

    Article  CAS  Google Scholar 

  29. S.C. Vanithakumari and K.K. Nanda, Adv. Mater. 21, 3581 (2009).

    Article  CAS  Google Scholar 

  30. H. Kim, J.S. Horwitz, G. Kushto, A. Piqué, Z.H. Kafafi, C.M. Gilmore, and D.B. Chrisey, J. Appl. Phys. 88, 6021 (2000).

    Article  CAS  Google Scholar 

  31. Y. Qu, T.A. Gessert, K. Ramanathan, R.G. Dhere, R. Noufi, and T.J. Coutts, J. Vac. Sci. Technol. A Vac. Surf. Films 11, 996 (1993).

    Article  CAS  Google Scholar 

  32. E.G.A. Víllora, T. Atou, T. Sekiguchi, T. Sugawara, M. Kikuchi, and T. Fukuda, Solid State Commun. 120, 455 (2001).

    Article  Google Scholar 

  33. J.B. Varley, J.R. Weber, A. Janotti, and C.G. Van de Walle, Appl. Phys. Lett. 97, 142106 (2010).

    Article  Google Scholar 

  34. E.G. Víllora, Y. Morioka, T. Atou, T. Sugawara, M. Kikuchi, and T. Fukuda, Phys. Status Solidi (a) 193, 187 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (61764001, 61474031); Guangxi Key Laboratory of Precision Navigation Technology and Application (DH201701); Guangxi District Education Office projects to enhance the basic ability of young teachers (2017KY0201); Japan Society for Promotion of Science (JSPS) for providing grants (KAKENHI Grant Numbers 16K06268). We thank Andrew Jackson, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiou Li or Qixin Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, H. & Guo, Q. Structural and Electrical Properties of Ga2O3 Films Deposited under Different Atmospheres by Pulsed Laser Deposition. J. Electron. Mater. 47, 6635–6640 (2018). https://doi.org/10.1007/s11664-018-6545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6545-6

Keywords

Navigation