Skip to main content
Log in

Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel–iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel–iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Banyai and D. Gerke, AP-711 Application Note (1996).

  2. A. Martin, AN-2162 Simple Success With Conducted EMI From DCDC Converters (2011).

  3. P.M. Raj, D. Mishra, S. Sitaraman, and R. Tummala, J. Mater. Sci. 1, 31 (2014).

    Google Scholar 

  4. S. Sitaraman, J. Min, M.R. Pulugurtha, M.S. Kim, V. Sundaram, and R. Tummala, 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (2015).

  5. J. Pak, M. Ha, J. Kim, D. Kang, H. Choi, S. Kwon, K. La, and J. Kim, 2008 10th Electronics Packaging Technology Conference (2008).

  6. K. Matsuge, S. Mira, M. Ishida, T. Kitahara, and T. Yamamoto, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535).

  7. N. Karim, J. Mao, and J. Fan, 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility (2010).

  8. C.-Y. Hsiao, C.-H. Huang, C.-D. Wang, K.-H. Liao, C.-H. Shen, C.-C. Wang, and T.-L. Wu, 2011 IEEE International Symposium on Electromagnetic Compatibility (2011).

  9. W.-S. Jou, H.-Z. Cheng, and C.-F. Hsu, J. Electron. Mater. 35, 462 (2006).

    Article  Google Scholar 

  10. Y. Wang, D. Sun, G. Liu, Y. Wang, and W. Jiang, J. Electron. Mater. 44, 2292 (2015).

    Article  Google Scholar 

  11. Z. Yang, F. Luo, L. Gao, Y. Qing, W. Zhou, and D. Zhu, J. Electron. Mater. 45, 5017 (2016).

    Article  Google Scholar 

  12. J. Wu and D. Chung, J. Electron. Mater. 37, 1088 (2008).

    Article  Google Scholar 

  13. A.O. Watanabe, S. Jeong, S. Kim, Y. Kim, J. Min, D. Wong, M.R. Pulugurtha, R. Mullapudi, J. Kim, and R.R. Tummala, 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) (2016).

  14. S. Varshney and S.K. Dhawan, J. Electron. Mater. 46, 1811 (2017).

    Article  Google Scholar 

  15. H.W. Ott, Electromagnetic Compatibility Engineering (Hoboken: Wiley, 2009).

    Book  Google Scholar 

  16. H.W. Ott, Noise Reduction Techniques in Electronic Systems (Singapore: Wiley, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atom O. Watanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, A.O., Raj, P.M., Wong, D. et al. Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling. J. Electron. Mater. 47, 5243–5250 (2018). https://doi.org/10.1007/s11664-018-6387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6387-2

Keywords

Navigation