Skip to main content
Log in

Oxidation Studies of Cu12Sb3.9Bi0.1S10Se3 Tetrahedrite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tetrahedrites are widespread minerals with general formula Cu10M2Sb4S13 (M = Cu, Mn, Fe, Co, Ni, Zn). Their thermoelectric properties can be tuned through proper doping and reach zT values as high as 1, being considered promising low-cost thermoelectric materials. However, for practical application in thermoelectric devices, it is necessary to establish their ability to operate for long periods under working temperatures and atmospheres. We present herein studies of oxidation in air of Cu12Sb3.9Bi0.1S10Se3 tetrahedrite at four different temperatures between 230°C and 375°C, together with preliminary corrosion studies in aggressive NaCl electrolyte. Surface oxidation already occurs at the lower studied temperatures, but a strong decrease of the oxidation rate is observed for materials treated at intermediate temperature (275°C), where a continuous surface layer of Cu2−xS forms, pointing to a protective effect of this layer that could be applied in devices operating at such temperatures. For the material treated at higher temperatures (350°C and 375°C), no tetrahedrite phases were seen after 1500 h, which can be related to the (tetrahedrite + chalcostibite + antimony → skinnerite) reaction that occurs above 280°C. Corrosion studies indicated that increasing the oxidation temperature unfortunately leads to a decrease of the corrosion resistance of tetrahedrite-based phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Library, L.L.N. U.S. Energy Flow. 2014 [cited 2015 25. October]; https://flowcharts.llnl.gov/.

  2. A.F. Ioffe, Energetic Basis of Thermoelectrical Cells from Semiconductors (Moscow: Academy of Sciences of the USSR, 1950) (in Russian).

    Google Scholar 

  3. C. Wood, Rep. Prog. Phys. 51, 459 (1988).

    Article  Google Scholar 

  4. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).

    Article  Google Scholar 

  5. K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).

    Article  Google Scholar 

  6. X. Lu and D.T. Morelli, Phys. Chem. Chem. Phys. 15, 5762 (2013).

    Article  Google Scholar 

  7. X. Lu and D. Morelli, J. Electron. Mater. 2014, 43 (1983).

    Google Scholar 

  8. J. Heo, G. Laurita, S. Muir, M.A. Subramanian, and D.A. Keszler, Chem. Mater. 26, 2047 (2014).

    Article  Google Scholar 

  9. R. Chetty, P. Kumar, D.S.G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giesterg, and R.C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2015).

    Article  Google Scholar 

  10. X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).

    Article  Google Scholar 

  11. X. Lu and D.T. Morelli, J. Electron. Mater. 2014, 43 (1983).

    Google Scholar 

  12. Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher, J. Tobola, and B. Lenoir, J. Mater. Chem. C 3, 10476 (2015).

    Article  Google Scholar 

  13. R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).

    Article  Google Scholar 

  14. X. Lu, D.T. Morelli, Y. Wang, W. Lai, Y. Xia, and V. Ozolins, Chem. Mater. 28, 1781 (2016).

    Article  Google Scholar 

  15. Y. Bouyrie, S. Sassi, C. Candolfi, J.-B. Vaney, A. Dauscher, and B. Lenoir, Dalton Trans. 45, 7294 (2016).

    Article  Google Scholar 

  16. D.S.P. Kumar, R. Chetty, P. Rogl, G. Rogl, E. Bauer, P. Malar, and R.C. Mallik, Intermetallics 78, 21 (2016).

    Article  Google Scholar 

  17. T. Barbier, S. Rollin-Martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, and E. Guilmeau, J. Am. Ceram. Soc. 99, 51 (2016).

    Article  Google Scholar 

  18. D.S.P. Kumar, R. Chetty, O.E. Femi, K. Chattopadhyay, P. Malar, and R.C. Mallik, J. Electron. Mater.. 46, 2616 (2017).

  19. L. Pauling and E.W. Neuman, Z. Kristallogr. 88, 54 (1934).

    Google Scholar 

  20. B.J. Wuensch, Science 141, 804 (1963).

    Article  Google Scholar 

  21. B.J. Wuensch, Z. Kristallogr. 119, 437 (1964).

    Article  Google Scholar 

  22. W. Lai, Y. Wang, D.T. Morelli, and X. Lu, Adv. Funct. Mater. 25, 3648 (2015).

    Article  Google Scholar 

  23. A.P. Gonçalves, E.B. Lopes, B. Villeroy, J. Monnier, C. Godart, and B. Lenoir, RSC Adv. 6, 102359 (2016).

    Article  Google Scholar 

  24. G. Nolze and W. Kraus, Powder Cell for Windows (Version 2.3), Federal Institute for Materials Research and Testing, Berlin, Germany (1999).

  25. T.J.B. Holland and S.A.T. Redfern, Mineral. Mag. 61, 65 (1997).

    Article  Google Scholar 

  26. B.J. Skinner, F.D. Luce, and E. Makovicky, Econ. Geol. 67, 924 (1972).

    Article  Google Scholar 

  27. M.H. Braga, J.A. Ferreira, C. Lopes, and L.F. Malheiros, Mater. Sci. Forum 587–588, 435 (2008).

    Article  Google Scholar 

  28. T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).

    Article  Google Scholar 

  29. A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion (Materials Park, OH: ASM International, 2002).

    Google Scholar 

  30. ASM Specialty Handbook: Heat-Resistant Materials, (Ed: J.R. Davis), ASM International (1997).

  31. P. Kofstad, High Temperature Corrosion (Essex: Elsevier Applied Science, 1988).

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Portuguese Foundation for Science and Technology (FCT), Portugal, through contracts UID/Multi/04349/2013, POCI-01-0145-FEDER-016674, and M-ERA-NET2/0010/2016. We would also like to acknowledge support from the French National Agency (ANR) in the framework of its program “PROGELEC” (Verre Thermo-Générateur “VTG”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António P. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, A.P., Lopes, E.B., Montemor, M.F. et al. Oxidation Studies of Cu12Sb3.9Bi0.1S10Se3 Tetrahedrite. J. Electron. Mater. 47, 2880–2889 (2018). https://doi.org/10.1007/s11664-018-6141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6141-9

Keywords

Navigation