Skip to main content
Log in

Effects of Mn Ion Implantation on XPS Spectroscopy of GaN Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gallium nitride (GaN) thin film was deposited onto a sapphire substrate and then implanted with 250 keV Mn ions at two different doses of 2 × 1016 ions/cm2 and 5 × 1016 ions/cm2. The as-grown and post-implantation-thermally-annealed samples were studied in detail using x-ray photoelectron spectroscopy (XPS). The XPS peaks of Ga 3d, Ga 2p, N 1s, Mn 2p and C 1s were recorded in addition to a full survey of the samples. The doublet peaks of Ga 2p for pure GaN were observed blue-shifted when compared with elemental Ga, and appeared further shifted to higher energies for the implanted samples. These observations point to changes in the bonds and the chemical environment of the host as a result of ion implantation. The results revealed broadening of the N 1s peak after implantation, which is interpreted in terms of the presence of N-Mn bonds in addition to N-Ga bonds. The XPS spectra of Mn 2p recorded for ion-implanted samples indicated splitting of Mn 2p 1/2 and Mn 2p 3/2 peaks higher than that for metallic Mn, which helps rule out the possibility of clustering and points to substitutional doping of Mn. These observations provide a framework that sheds light on the local environment of the material for understanding the mechanism of magnetic exchange interactions in Mn:GaN based diluted magnetic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kenneth, Jackson, Compound Semiconductor Devices: Structures and Processing (New York: Wiley, 2008).

    Google Scholar 

  2. Y.S. Park, in Proceedings of SPIE, vol 4413 (2001), p. 283.

  3. B.J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013).

    Article  Google Scholar 

  4. D. Ehrentraut, E. Meissner, and M. Bockowski, Technology of Gallium Nitride Crystal Growth, vol. 133 (Berlin: Springer, 2010).

    Google Scholar 

  5. T. Dietl, Nat. Mater. 9, 965 (2010).

    Article  Google Scholar 

  6. T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).

    Article  Google Scholar 

  7. J.K. Furdyna, J. Vac. Sci. Tech. A 4, 2002 (1986).

    Article  Google Scholar 

  8. M. Hegde, S.S. Farvid, I.D. Hosein, and P.V. Radovanovic, ACS Nano 5, 6365 (2011).

    Article  Google Scholar 

  9. G.P. Das, B.K. Rao, and P. Jena, Phys. Rev. B 68, 035207 (2003).

    Article  Google Scholar 

  10. J.J. Weimer, X-Ray Photoelectron SpectroscopyCharacterization of Materials, (Hoboken: Wiley, 2002).

    Book  Google Scholar 

  11. H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, J.Y. Lin, Y.P. Feng, J. Ding, L.H. Van, and J.H. Yin, Phys. Rev. Lett. 99, 127201 (2007).

    Article  Google Scholar 

  12. S. Lekshmy, S. Nair, V.S.N. Anitha, P.V. Thomas, and K. Joy, J. Am. Ceram. Soc. 97, 3184 (2004).

    Article  Google Scholar 

  13. V. Ganesh, S. Suresh, E. Celasco, and K. Bhaskar, Appl. Nanosci. 2, 169 (2012).

    Article  Google Scholar 

  14. S.O. Hwang, H.S. Kim, S.H. Park, J. Park, S.Y. Bae, B. Kim, and G. Lee, J. Phys. Chem. C 112, 2934 (2008).

    Article  Google Scholar 

  15. A. Majid, R. Sharif, G. Husnain, and A. Ali, J. Phys. D Appl. Phys. 42, 135401 (2009).

    Article  Google Scholar 

  16. C.Y. Hwang, M.J. Schurman, W.E. Mayo, Y.C. Lu, R.A. Stall, and T. Salagaj, J. Elect. Mater. 26, 243 (1997).

    Article  Google Scholar 

  17. M.A. Reshchikov, D.O. Demchenko, A. Usikov, H. Helava, and Y. Makarov, Phys. Rev. B 90, 235203 (2014).

    Article  Google Scholar 

  18. Z. Wang, B. Huang, L. Yu, Y. Dai, P. Wang, X. Qin, and H. Liu, J. Am. Chem. Soc. 130, 16366 (2008).

    Article  Google Scholar 

  19. M. Dinescu, P. Verardi, C. Boulmer-Leborgne, C. Gerardi, L. Mirenghi, and V. Sandu, Appl. Surf. Sci. 127, 559 (1998).

    Article  Google Scholar 

  20. Y. Xie, F. Wu, X. Sun, H. Chen, M. Lv, S. Ni, and G. Liu, Sci. Rep. 6, 19060 (2016).

    Article  Google Scholar 

  21. C. Huang, Z. Wang, Y. Ni, H. Wu, and S. Chen, RSC Adv. 7, 23486 (2017).

    Article  Google Scholar 

  22. Y. Xu, B. Yao, and Q. Cui, RSC Adv. 6, 7521 (2016).

    Article  Google Scholar 

  23. S.P. Kowalczyk, L. Ley, F.R. McFeely, and D.A. Shirley, Phys. Rev. B 11, 1721 (1975).

    Article  Google Scholar 

  24. J.I. Hwang, Y. Ishida, M. Kobayashi, H. Hirata, K. Takubo, T. Mizokawa, and Y. Muramatsu, Phys. Rev. B. 72, 085216 (2005).

    Article  Google Scholar 

  25. B.Y. Man, C. Yang, M. Liu, C.S. Chen, X.G. Gao, S.C. Xu, C.C. Wang, and Z.C. Sun, App. Sur. Sci. 258, 525 (2011).

    Article  Google Scholar 

  26. H.W. Nesbitt and D. Banerjee, Am. Miner. 83, 305 (1998).

    Article  Google Scholar 

  27. B. Hu, B.Y. Man, M. Liu, C. Yang, C.S. Chen, X.G. Gao, S.C. Xu, C.C. Wang, and Z.C. Sun, Surf. Interface Anal. 45, 1052 (2013).

    Article  Google Scholar 

  28. F. Schubert, S. Wirth, F. Zimmermann, J. Heitmann, T. Mikolajick, and S. Schmult, Sci. Tech. Adv. Mater. 17, 239 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Majid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majid, A., Ahmad, N., Rizwan, M. et al. Effects of Mn Ion Implantation on XPS Spectroscopy of GaN Thin Films. J. Electron. Mater. 47, 1555–1559 (2018). https://doi.org/10.1007/s11664-017-5955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5955-1

Keywords

Navigation