Skip to main content

Advertisement

Log in

Optoelectronic Structure and Related Transport Properties of Ag2Sb2O6 and Cd2Sb2O7

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using the full-potential linearized augmented-plane wave method, the electronic structure and thermoelectric properties of Ag2Sb2O6 and Cd2Sb2O7 compounds have been explored. The modified Becke–Johnson potential was applied to treat the exchange–correlation energy term. The electronic band structures reveal that the valence-band maximum and conduction-band minimum occur at Γ point, indicating that Ag2Sb2O6 and Cd2Sb2O7 are direct energy bandgap semiconductors. Strong hybridization appeared between Ag (Cd)-s/p and O-s/p states. The optical properties, i.e., complex dielectric function, reflectivity, refractive index, and energy loss function, reveal high reflectivity in the ultraviolet energy range, indicating usefulness of these materials in shields from high-energy radiation. Combining transport theory and the outputs from the full-potential linearized augmented-plane wave calculations, the thermoelectric properties were analyzed as functions of temperature. Due to their high thermopower and narrow bandgap, Ag2Sb2O6 and Cd2Sb2O7 are suitable materials for application in optoelectronic and thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Schrewelius, Z. Anorg. Chem. 238, 241 (1938).

    Article  Google Scholar 

  2. A.W. Sleight, Mater. Res. Bull. 4, 377 (1969).

    Article  Google Scholar 

  3. T. Kako, N. Kikugawa, and J. Ye, Catal. Today 131, 197 (2008).

    Article  Google Scholar 

  4. K. Yanagawa, Y. Ohki, T. Omata, H. Hosono, N. Ueda, and H. Kawazoe, Jpn. J. Appl. Phys. 33, L232 (1994).

    Article  Google Scholar 

  5. G. Laurita, J. Vielma, F. Winter, R. Berthelot, A. Largeteau, R. Pöttgen, G. Schneider, and M.A. Subramanian, J. Solid State Chem. 210, 65 (2014).

    Article  Google Scholar 

  6. H. Mizoguchi, H.W. Eng, and P.M. Woodward, Inorg. Chem. 43, 1667–1680 (2004).

    Article  Google Scholar 

  7. J.P. Allen, M.K. Nilsson, D.O. Scanlon, and G.W. Watson, Phys. Rev. B: Condens. Matter 83, 035207 (2011).

    Article  Google Scholar 

  8. H.Y. Sang and J.-F. Li, J. Alloys Compd. 493, 678 (2010).

    Article  Google Scholar 

  9. Y. Matsumoto, K. Funaki, J. Hombo, and Y. Ogawa, J. Solid State Chem. 99, 336 (1992).

    Article  Google Scholar 

  10. M. Yasukawa, H. Hosono, N. Ueda, and H. Kawazoe, Solid State Commun. 95, 399 (1995).

    Article  Google Scholar 

  11. A. Bystrom, H. Hok, and B. Mason, Ark. Kemi. Mineral. Och. Geol. 115B, 8 (1941).

    Google Scholar 

  12. J.-Y. Moisan, J. Pannetier, J. Lucas, and C.R. Acad, Sci. Ser. IIc: Chim. 271, 402 (1970).

    Google Scholar 

  13. F. Brisse, D.J. Stewart, V. Seidl, and O. Knop, Can. J. Chem. 50, 3648 (1972).

    Article  Google Scholar 

  14. B.R. Li and J.L. Zhang, J. Mater. Sci. Lett. 9, 109 (1990).

    Article  Google Scholar 

  15. D.S. Ginley and C. Bright, Mater. Res. Soc. Bull. 25, 15 (2000).

    Article  Google Scholar 

  16. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  17. W.-S. Liu, B.-P. Zhang, J.-F. Li, H.-L. Zhang, and L.-D. Zhao, J. Appl. Phys. 102, 103717 (2007).

    Article  Google Scholar 

  18. W. Khan and S.-G. Said, RSC Adv. 5, 9455 (2015).

    Article  Google Scholar 

  19. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K: An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties (Wien: TechnisheUniversitat, 2001).

    Google Scholar 

  20. K. Schwarz, P. Blaha, and S.B. Trickey, Mol. Phys. 108, 3147 (2010).

    Article  Google Scholar 

  21. A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).

    Article  Google Scholar 

  22. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 85, 155109 (2012).

    Article  Google Scholar 

  23. N.N. Anua, R. Ahmed, A. Shaari, M.A. Saeed, B.U. Haq, and S. Goumri-Said, Semicond. Sci. Technol. 28, 105015 (2013).

    Article  Google Scholar 

  24. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  25. E.A. Axtell, J.H. Liao, Z. Pikramenou, and M.G. Kanatzidis, Chem. Eur. J. 2, 656 (1996).

    Article  Google Scholar 

  26. C. Ambrosh-Draxl and J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006).

    Article  Google Scholar 

  27. P.E. Blochl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994).

    Article  Google Scholar 

  28. R.L. de Kronig, J. Opt. Soc. Am. 12, 547 (1926).

    Article  Google Scholar 

  29. B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said, and R. Ahmad, J. Appl. Phys. 109, 023109 (2011).

    Article  Google Scholar 

  30. S. Saha and T.P. Sinha, Phys. Rev. B 62, 8828 (2000).

    Article  Google Scholar 

  31. C. Stiewe, L. Bertini, M. Toprak, M. Christensen, D. Platzek, S. Williams, C. Gatti, E. Muller, B.B. Iversen, M. Muhammed, and M. Rowe, J. Appl. Phys. 97, 044317 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sikander Azam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Hussain, S., Khan, S.A. et al. Optoelectronic Structure and Related Transport Properties of Ag2Sb2O6 and Cd2Sb2O7 . J. Electron. Mater. 47, 1481–1489 (2018). https://doi.org/10.1007/s11664-017-5939-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5939-1

Keywords

Navigation