Skip to main content
Log in

DLTS Analysis and Interface Engineering of Solution Route Fabricated Zirconia Based MIS Devices Using Plasma Treatment

  • Topical Collection: 59th Electronic Materials Conference 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we have fabricated low-temperature sol–gel spin-coated and oxygen (O2) plasma treated ZrO2 thin film-based metal–insulator–semiconductor devices. To understand the impact of plasma treatment on the Si/ZrO2 interface, deep level transient spectroscopy measurements were performed. It is reported that the interface state density (D it) comes down to 7.1 × 1010 eV−1 cm−2 from 4 × 1011 eV−1 cm−2, after plasma treatment. The reduction in D it is around five times and can be attributed to the passivation of oxygen vacancies near the Si/ZrO2 interface, as they try to relocate near the interface. The energy level position (E T) of interfacial traps is estimated to be 0.36 eV below the conduction band edge. The untreated ZrO2 film displayed poor leakage behavior due to the presence of several traps within the film and at the interface; O2 plasma treated films show improved leakage current density as they have been reduced from 5.4 × 10−8 A/cm2 to 1.98 × 10−9 A/cm2 for gate injection mode and 6.4 × 10−8 A/cm2 to 6.3 × 10−10 A/cm2 for substrate injection mode at 1 V. Hence, we suggest that plasma treatment might be useful in future device fabrication technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, Nat. Mat. 1, 241 (2002).

    Article  Google Scholar 

  2. E.S. Shin, J.D. Oh, D.K. Kim, Y.-G. Ha, and J.H. Choi, J. Phys. D Appl. Phys. 48, 45105 (2015).

    Article  Google Scholar 

  3. J.H. Park, J.Y. Oh, S.W. Han, and T. Il, Lee, and H.K. Baik. ACS Appl. Mater. Interfaces 7, 4494 (2015).

    Article  Google Scholar 

  4. Y. Su, C. Wang, W. Xie, F. Xie, J. Chen, N. Zhao, and J. Xu, A.C.S. Appl. Mater. Interfaces 3, 4662 (2011).

    Article  Google Scholar 

  5. A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, J. Appl. Phys. 121, 85301 (2017).

    Article  Google Scholar 

  6. A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, AIP Adv. 5, 117122 (2015).

    Article  Google Scholar 

  7. A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, J. Mater. Sci.: Mater. Electron. 27, 5264 (2016).

    Google Scholar 

  8. J.S. Meena, M.C. Chu, S.W. Kuo, F.C. Chang, and F.H. Ko, Phys. Chem. Chem. Phys. 12, 2582 (2010).

    Article  Google Scholar 

  9. A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, Appl. Surf. Sci. 370, 373 (2016).

    Article  Google Scholar 

  10. A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, Appl. Phys. Lett. 110, 132904 (2017).

    Article  Google Scholar 

  11. S. Mondal and A. Kumar, Superlatt. Microstruct. 100, 876 (2016).

    Article  Google Scholar 

  12. N.O. Pearce, B. Hamilton, A.R. Peaker, and R.A. Craven, J. Appl. Phys. 62, 576 (1987).

    Article  Google Scholar 

  13. S.N. Volkos, E.S. Efthymiou, S. Bernardini, I.D. Hawkins, A.R. Peaker, and G. Petkos, J. Appl. Phys. 100, 124103 (2006).

    Article  Google Scholar 

  14. S. Kundu, Y. Anitha, S. Chakraborty, and P. Banerji, J. Vac. Sci. Technol. B 30, 051206 (2012).

    Article  Google Scholar 

  15. C. Tang and R. Ramprasad, Appl. Phys. Lett. 92, 182908 (2008).

    Article  Google Scholar 

  16. N. Zhan, M. Xu, D. Wei, and F. Lu, Appl. Surf. Sci. 254, 7512 (2008).

    Article  Google Scholar 

  17. J. Singh, M. Chu, C. Wu, J. Liang, and Y. Chang, Org. Electron. 13, 721 (2012).

    Article  Google Scholar 

  18. Z.Q. Liu, W.K. Chim, S.Y. Chiam, J.S. Pan, and C.M. Ng, J. Mater. Chem. 22, 17887 (2012).

    Article  Google Scholar 

  19. L. Giordano, F. Cinquini, and G. Pacchioni, Phys. Rev. B 73, 45414 (2006).

    Article  Google Scholar 

  20. A. Kumar, S. Mondal, and K.S.R. Koteswara Rao, Appl. Phys. A 122, 11 (2016).

    Google Scholar 

  21. M.T. Nichols, W. Li, and D. Pei, G. a. Antonelli, Q. Lin, S. Banna, Y. Nishi, and J.L. Shohet. J. Appl. Phys. 115, 94105 (2014).

    Article  Google Scholar 

  22. J.H. Park, Y.B. Yoo, K.H. Lee, W.S. Jang, J.Y. Oh, S.S. Chae, andH.K. Baik, ACS Appl. Mater. Interfaces 5, 410 (2012).

    Article  Google Scholar 

  23. K.L. Ganapathi, N. Bhat, and S. Mohan, Appl. Phys. Lett. 103, 1 (2013).

    Google Scholar 

  24. J. Liu, M. Liao, M. Imura, A. Tanaka, H. Iwai, and Y. Koide, Sci. Rep. 4, 6395 (2014).

    Article  Google Scholar 

  25. F.-C. Chiu, Z.H. Lin, C.-W. Chang, C.-C. Wang, K.-F. Chuang, C.Y. Huang, J.Y. Lee, and H.-L. Hwang, J. Appl. Phys. 97, 34506 (2005).

    Article  Google Scholar 

  26. S. Dutta, A. Pandey, I. Yadav, O.P. Thakur, A. Kumar, R. Pal, and R. Chatterjee, J. Appl. Phys. 114, 14105 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mondal, S. & Koteswara Rao, K.S.R. DLTS Analysis and Interface Engineering of Solution Route Fabricated Zirconia Based MIS Devices Using Plasma Treatment. J. Electron. Mater. 47, 955–960 (2018). https://doi.org/10.1007/s11664-017-5938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5938-2

Keywords

Navigation