Skip to main content
Log in

Solvent Effect on Morphology and Optical Properties of Poly(3-hexylthiophene):TIPS-Pentacene Blends

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Optical, electrical, and morphological properties of poly(3-hexylthiophene):6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene (P3HT:TP) blend films, in the proportion of 1:1 (w/w), have been investigated using chloroform, toluene, or trichlorobenzene as solvent. The main morphological feature was formation of aggregates that tended to segregate vertically, exhibiting characteristics that were strongly influenced by the type of solvent applied. The phase segregation of TP observed for the P3HT:TP blend film obtained using chloroform, the most volatile of the investigated solvents, can be explained based on the Marangoni effect and the Flory–Huggins model. The TP molecules induce better organization of P3HT, as evidenced by the ultraviolet–visible (UV–Vis) absorption spectra. Photoluminescence (PL) measurements revealed quenching and an increase in the lifetime of the carriers. The PL measurements also showed that the exciton dissociation was dependent on the characteristics of the surface on which the film was deposited. P3HT:TP blend film prepared using trichlorobenzene showed the best morphology with moderate phase segregation and better P3HT ordering. The output current from organic field-effect transistors (OFETs) with blend film prepared using trichlorobenzene was three times (3×) larger than when using the other solvents, with carrier mobility of 5.0 × 10−3 cm2 V−1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wang, R. Chen, F. Zhuang, C. Chen, S. Su, and Y. Xiang, Thin Solid Films 584, 359 (2015).

    Article  Google Scholar 

  2. B. Kang, W.H. Lee, and K. Cho, ACS Appl. Mater. Interfaces 5, 2302 (2013).

    Article  Google Scholar 

  3. G. Gelinck, P. Heremans, K. Nomoto, and T.D. Anthopoulos, Adv. Mater. 22, 3778 (2010).

    Article  Google Scholar 

  4. H. Sirringhaus, Adv. Mater. 17, 2411 (2005).

    Article  Google Scholar 

  5. Y.Y. Lin, D.J. Gundlach, S.F. Nelson, and T.N. Jackson, IEEE Trans. Electr. Dev. 44, 1325 (1997).

    Article  Google Scholar 

  6. Y.Y. Lin, D.J. Gundlach, S.F. Nelson, and T.N. Jackson, IEEE Trans. Electr. Dev. 18, 606 (1997).

    Article  Google Scholar 

  7. T. Minakata and Y. Natsume, Synth. Met. 153, 1 (2005).

    Article  Google Scholar 

  8. J. Smith, R. Hamilton, I. McCulloch, N.S. Stutzmann, M. Heeney, D.D.C. Bradley, and T.D. Anthopoulos, J. Mater. Chem. 20, 2562 (2010).

    Article  Google Scholar 

  9. S. Subramanian, S.K. Park, S.R. Parkin, V. Podzorov, T.N. Jackson, and J.E. Anthony, J. Am. Chem. Soc. 130, 2706 (2008).

    Article  Google Scholar 

  10. M.W. Lee, G.S. Ryu, Y.U. Lee, C. Pearson, M.C. Petty, and C.K. Song, Microelectron. Eng. 94, 1 (2012).

    Article  Google Scholar 

  11. M.B. Madec, P.J. Smith, A. Malandraki, N. Wang, J.G. Korvink, and S.G. Yeates, J. Mater. Chem. 20, 9155 (2010).

    Article  Google Scholar 

  12. H.B. Akkerman, H. Li, and Z. Bao, Org. Electron. 13, 2056 (2012).

    Article  Google Scholar 

  13. C.M. Keum, J.H. Kwon, S.D. Lee, and J.H. Bae, Sol. Stat. Electron. 89, 189 (2013).

    Article  Google Scholar 

  14. S.Y. Cho, J.M. Ko, J.Y. Jung, J.Y. Lee, D.H. Choi, and C. Lee, Org. Electron. 13, 1329 (2012).

    Article  Google Scholar 

  15. M.S. Ozório, G.L. Nogueira, R.M. Morais, C.S. Martin, C.J.L. Constantino, and N. Alves, Thin Solid Films 608, 97 (2016).

    Article  Google Scholar 

  16. D.M. Russell, C.J. Newsome, S.P. Li, T. Kugler, and M. Ishida, Appl. Phys. Lett. 87, 222109 (2005).

    Article  Google Scholar 

  17. H. Zhao, Z. Wang, G. Dong, and L. Duan, Phys. Chem. Chem. Phys. 17, 6274 (2015).

    Article  Google Scholar 

  18. J.H. Park, H. Lim, H. Cheong, K.M. Lee, H.C. Sohn, G. Lee, and S. Im, Org. Electron. 13, 1250 (2012).

    Article  Google Scholar 

  19. D.K. Hwang, C.F. Hernandez, J.D. Berrigan, Y. Fang, J. Kim, W.J. Potscavage, H. Cheun, K.H. Sandhage, and B. Kippelen, J. Mater. Chem. 22, 5531 (2012).

    Article  Google Scholar 

  20. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature 475, 364 (2011).

    Article  Google Scholar 

  21. Y. Diao, B.C.K. Tee, G. Giri, J. Xu, D.H. Kim, H.A. Becerril, R.M. Stoltenberg, T.H. Lee, G. Xue, S.C.B. Mannsfeld, and Z. Bao, Nat. Mater. 12, 665 (2013).

    Article  Google Scholar 

  22. K.W. Chou, H.U. Khan, M.R. Niazi, B. Yan, R. Li, M.M. Payne, J.E. Anthony, D.M. Smilgies, and A. Amassian, J. Mater. Chem. C 2, 5681 (2014).

    Article  Google Scholar 

  23. G.H. Fredrickson, A.J. Liu, and F.S. Bates, Macromolecules 27, 2503 (1994).

    Article  Google Scholar 

  24. C.M. Bjorstrom, K.O. Magnusson, and E. Moons, Synth. Met. 152, 109 (2005).

    Article  Google Scholar 

  25. C. Ton-That, A.G. Shard, D.O.H. Teare, and R.H. Bradley, Polymer 42, 1121 (2001).

    Article  Google Scholar 

  26. S.I. Jun and H.S. Lee, Curr. Appl. Phys. 12, 467 (2012).

    Article  Google Scholar 

  27. D.P. Birnie, Langmuir 29, 9072 (2013).

    Article  Google Scholar 

  28. J.M. Patete, X. Peng, J.M. Serafin, and S.S. Wong, Langmuir 27, 5792 (2011).

    Article  Google Scholar 

  29. S.B. Jung, T.J. Ha, and H.H. Park, J. Appl. Phys. 101, 024109 (2007).

    Article  Google Scholar 

  30. A.R. Aiyar, J.I. Hong, R. Nambiar, D.M. Collard, and E. Reichmanis, Adv. Funct. Mater. 21, 2652 (2011).

    Article  Google Scholar 

  31. G. Nagarjuna, M. Baghgar, J.A. Labastide, D.D. Algaier, M.D. Barnes, and D. Venkataraman, ACS Nano 6, 10750 (2012).

    Article  Google Scholar 

  32. S. Falke, P. Eravuchira, A. Materny, and C. Lienau, J. Raman Spectrosc. 42, 1897 (2011).

    Article  Google Scholar 

  33. P.J. Brown, D.S. Thomas, A. Kohler, J.S. Wilson, J.S. Kim, C.M. Ramsdale, H. Sirringhaus, and R.H. Friend, Phys. Rev. B 67, 060101(R) (2003).

    Google Scholar 

  34. J. Piris, T.E. Dykstra, A.A. Bakulin, P.H.M. van Loosdrecht, W. Knulst, M.T. Trinh, J.M. Schins, and L.D.A. Siebbeles, J. Phys. Chem. C 113, 14500 (2009).

    Article  Google Scholar 

  35. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, and D.M. Leeuw, Nature 401, 685 (1999).

    Article  Google Scholar 

  36. C.J. Lin, C.L. Liu, and W.C. Chen, J. Mater. Chem. C 3, 4290 (2015).

    Article  Google Scholar 

  37. Y. Lin, J.A. Lim, Q. Wei, S.C.B. Mannsfeld, A.L. Briseno, and J.J. Watkins, Chem. Mater. 24, 622 (2012).

    Article  Google Scholar 

  38. W.C. Tsoi, D.T. James, J.S. Kim, P.G. Nicholson, C.E. Murphy, D.D.C. Bradley, J. Nelson, and J.S. Kim, J. Am. Chem. Soc. 133, 9834 (2011).

    Article  Google Scholar 

  39. S.S. Pandey, W. Takashima, S. Nagamatsu, T. Endo, M. Rikukawa, and K. Kaneto, J. Appl. Phys. 39, 94 (2000).

    Article  Google Scholar 

  40. M.J.Y. Tayebjee, K.N. Schwarz, R.W. MacQueen, M. Dvorák, A.W.C. Lam, K.P. Ghiggino, D.R. McCamey, T.W. Schmidt, and G.J. Conibeer, J. Phys. Chem. C 120, 157 (2016).

    Article  Google Scholar 

  41. Y.D. Zhang, Y. Wu, Y. Xu, Q. Wang, K. Liu, J.W. Chen, J.J. Cao, C. Zhang, H. Fu, and H.L. Zhang, J. Am. Chem. Soc. 138, 6739 (2016).

    Article  Google Scholar 

  42. W.C. Tsoi, S.J. Spencer, L. Yang, A.M. Ballantyne, P.G. Nicholson, A. Turnbull, A.G. Shard, C.E. Murphy, D.D.C. Bradley, J. Nelson, and J.S. Kim, Macromolecules 44, 2944 (2011).

    Article  Google Scholar 

  43. O.J. Korovyanko, R. Österbacka, X.M. Jiang, Z.V. Vardeny, and R.A.J. Janssen, Phys. Rev. B 64, 235122 (2001).

    Article  Google Scholar 

  44. Y. Xie, Y. Li, L. Xiao, Q. Qiao, R. Dhakal, Z. Zhang, Q. Gong, D. Galipeau, and X. Yan, J. Phys. Chem. C 114, 14590 (2010).

    Article  Google Scholar 

  45. E. Busby, E.C. Carroll, E.M. Chinn, L. Chang, A.J. Moulé, and D.S. Larsen, J. Phys. Chem. Lett. 2, 2764 (2011).

    Article  Google Scholar 

  46. N. Banerji, S. Cowan, E. Vauthey, and A.J. Heeger, J. Phys. Chem. C 115, 9726 (2011).

    Article  Google Scholar 

  47. J.A. Labastide, M. Baghgar, A. McKenna, and M.D. Barnes, J. Phys. Chem. C 116, 23803 (2012).

    Article  Google Scholar 

  48. O.G. Reid, J.A.N. Malik, G. Latini, S. Dayal, N. Kopidakis, C. Silva, N. Stingelin, and G. Rumbles, Polym. Sci. Part B Polym. Phys. 50, 27 (2011).

    Article  Google Scholar 

  49. E. Busby, C.W. Rochester, A.J. Moulé, and D.S. Larsen, Chem. Phys. Lett. 513, 77 (2011).

    Article  Google Scholar 

  50. G. Hukic-Markosian, T. Basel, S. Singh, Z.V. Vardeny, S. Li, and D. Laird, Appl. Phys. Lett. 100, 21 (2012).

    Article  Google Scholar 

  51. F. Paquin, G. Latini, M. Sakowicz, P.L. Karsenti, L. Wang, D. Beljonne, N. Stingelin, and C. Silva, Phys. Rev. Lett. 106, 197401 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maíza Silva Ozório.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozório, M.S., Camacho, S.A., Cordeiro, N.J.A. et al. Solvent Effect on Morphology and Optical Properties of Poly(3-hexylthiophene):TIPS-Pentacene Blends. J. Electron. Mater. 47, 1353–1361 (2018). https://doi.org/10.1007/s11664-017-5931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5931-9

Keywords

Navigation