Skip to main content

Advertisement

Log in

Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

  • Topical Collection: 59th Electronic Materials Conference 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic–inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. D.B. Mitzi, Progress in Inorganic Chemistry (Hoboken: Wiley, 1999), pp. 1–121.

    Book  Google Scholar 

  2. National Renewable Energy Laboratory. Best Research-Cell Efficiencies. http://www.nrel.gov/ncpv/images/effici ency_chart.jpg. Accessed 25 June 2017.

  3. M.A. Green, A. Ho-Baillie, and H.J. Snaith, Nat. Photonics 8, 506 (2014).

    Article  Google Scholar 

  4. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 341 (2013).

    Article  Google Scholar 

  5. W.J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).

    Article  Google Scholar 

  6. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Energy Environ. Sci. 7, 982 (2014).

    Article  Google Scholar 

  7. A.K. Guria, S.K. Dutta, S. Das Adhikari, and N. Pradhan, ACS Energy Lett. 2, 1014 (2017).

    Article  Google Scholar 

  8. W.A. Dunlap-Shohl, R. Younts, B. Gautam, K. Gundogdu, and D.B. Mitzi, J. Phys. Chem. C 120, 16437 (2016).

    Article  Google Scholar 

  9. S. Shahbazi, C.M. Tsai, S. Narra, C.Y. Wang, H.S. Shiu, S. Afshar, N. Taghavinia, and E.W.G. Diau, J. Phys. Chem. C 121, 3673 (2017).

    Article  Google Scholar 

  10. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, and A.D. Mohite, Science 347, 522 (2015).

    Article  Google Scholar 

  11. K. Liang, D.B. Mitzi, and M.T. Prikas, Chem. Mater. 10, 403 (1998).

    Article  Google Scholar 

  12. K. Hwang, Y.S. Jung, Y.J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.Y. Kim, and D. Vak, Adv. Mater. 27, 1241 (2015).

    Article  Google Scholar 

  13. S.-G. Li, K.-J. Jiang, M.-J. Su, X.-P. Cui, J.-H. Huang, Q.-Q. Zhang, X.-Q. Zhou, L.-M. Yang, and Y.-L. Song, J. Mater. Chem. A 3, 9092 (2015).

    Article  Google Scholar 

  14. L.K. Ono, M.R. Leyden, S. Wang, and Y. Qi, J. Mater. Chem. A 4, 6693 (2016).

    Article  Google Scholar 

  15. W.S. Yang, B. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, and S. Il Seok, Science 356, 1376 (2017).

    Article  Google Scholar 

  16. M. Liu, M.B. Johnston, and H.J. Snaith, Nature 501, 395 (2013).

    Article  Google Scholar 

  17. D. Yang, Z. Yang, W. Qin, Y. Zhang, S.F. Liu, and C. Li, J. Mater. Chem. A 3, 9401 (2015).

    Article  Google Scholar 

  18. D.B. Mitzi, M.T. Prikas, and K. Chondroudis, Chem. Mater. 11, 542 (1999).

    Article  Google Scholar 

  19. S. Wang, L.K. Ono, M.R. Leyden, Y. Kato, S.R. Raga, M.V. Lee, and Y. Qi, J. Mater. Chem. A 3, 14631 (2015).

    Article  Google Scholar 

  20. W. Ge, T.B. Hoang, M.H. Mikkelsen, and A.D. Stiff-Roberts, Appl. Phys. A Mater. Sci. Process. 122, 824 (2016).

    Article  Google Scholar 

  21. W. Ge, N.K. Li, R.D. McCormick, E. Lichtenberg, Y.G. Yingling, A.D. Stiff-Roberts, and A.C.S. Appl, Mater. Interfaces 8, 19494 (2016).

    Article  Google Scholar 

  22. Q. Yu, W. Ge, A. Atewologun, G.P. López, and A.D. Stiff-Roberts, J. Mater. Chem. B 2, 4371 (2014).

    Article  Google Scholar 

  23. R.D. McCormick, J. Lenhardt, and A.D. Stiff-Roberts, Polymers (Basel) 4, 341 (2012).

    Article  Google Scholar 

  24. W. Ge, A. Atewologun, and A.D. Stiff-Roberts, Org. Electron. 22, 98 (2015).

    Article  Google Scholar 

  25. R. Pate, K.R. Lantz, and A.D. Stiff-Roberts, Thin Solid Films 517, 6798 (2009).

    Article  Google Scholar 

  26. N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, and N.G. Park, J. Am. Chem. Soc. 137, 8696 (2015).

    Article  Google Scholar 

  27. Y. Guo, K. Shoyama, W. Sato, Y. Matsuo, K. Inoue, K. Harano, C. Liu, H. Tanaka, and E. Nakamura, J. Am. Chem. Soc. 137, 15907 (2015).

    Article  Google Scholar 

  28. L.C. Chen, J.R. Wu, Z.L. Tseng, C.C. Chen, S.H. Chang, J.K. Huang, K.L. Lee, and H.M. Cheng, Materials (Basel). 9, 747 (2016).

    Article  Google Scholar 

  29. L.-C. Chen, C.-C. Chen, J.-C. Chen, and C.-G. Wu, Sol. Energy 122, 1047 (2015).

    Article  Google Scholar 

  30. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S. Il Seok, Nat. Mater. 13, 897 (2014).

    Article  Google Scholar 

  31. J.S. Manser, B. Reid, and P.V. Kamat, J. Phys. Chem. C 119, 17065 (2015).

    Article  Google Scholar 

  32. P.P. Khlyabich and Y. Loo, Chem. Mater. 28, 9041 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, Research Triangle MRSEC (DMR-1121107). We would like to acknowledge the contributions of Wangyao Ge, Yuankai Liu, and Chenqi Zhao from the Stiff-Roberts group at Duke University in developing the RIR-MAPLE methods described within this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne D. Stiff-Roberts.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barraza, E.T., Dunlap-Shohl, W.A., Mitzi, D.B. et al. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation. J. Electron. Mater. 47, 917–926 (2018). https://doi.org/10.1007/s11664-017-5814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5814-0

Keywords