Skip to main content
Log in

Stable Dielectric Properties in the Intermediate Temperature Range of 50°C to 260°C for Na0.5Bi0.5TiO3-SrTiO3 Ceramics with Er2O3 Doping

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To meet the requirement for capacitors with low loss and stable dielectric constant in the intermediate temperature range, (1 − x)Na0.5Bi0.5TiO3xSrTiO3 (x = 0.2, 0.3, 0.4, 0.5) ceramics have been synthesized by conventional solid-state reaction. Dielectric measurements showed double-shoulder dielectric peaks for the ceramics, with the ceramic having x = 0.3 showing the most stable behavior. Furthermore, Er2O3 was doped into the 0.7Na0.5Bi0.5TiO3–0.3SrTiO3 ceramic at content of 0.02 mol.% to 0.10 mol.%. The results show that Er doping can widen the flat temperature range and decrease the dielectric constant. The ceramic doped with 0.75 mol.% Er2O3 showed the widest temperature range of 50°C to 260°C in a dielectric constant window of <±5% around 2420 with loss <0.02. Ceramics in the 0.7Na0.5Bi0.5TiO3–0.3SrTiO3 system are therefore attractive dielectrics for use in applications at intermediate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Lim, S.J. Zhang, and T.R. Shrout, Electron. Mater. Lett. 7, 71 (2011).

    Article  Google Scholar 

  2. J.D. Zang, M. Li, D.C. Sinclair, T. Fromling, W. Jo, and J. Rodel, J. Am. Ceram. Soc. 97, 2825 (2014).

    Article  Google Scholar 

  3. J.D. Zang, M. Li, D.C. Sinclair, W. Jo, and J. Rodel, J. Am. Ceram. Soc. 97, 1523 (2014).

    Article  Google Scholar 

  4. R. Dittmer, W. Jo, D. Damjanovic, and J.R. Rödel, J. Appl. Phys. 109, 034107 (2011).

    Article  Google Scholar 

  5. J.B. Lim, S. Zhang, N. Kim, and T.R. Shrout, J. Am. Ceram. Soc. 92, 679 (2009).

    Article  Google Scholar 

  6. G.F. Yao, X.H. Wang, Y.C. Zhang, Z.B. Shen, and L.T. Li, J. Am. Ceram. Soc. 95, 3525 (2012).

    Article  Google Scholar 

  7. G.F. Yao, X.H. Wang, Y.Y. Wu, and L.T. Li, J. Am. Ceram. Soc. 95, 614 (2012).

    Article  Google Scholar 

  8. S.F. Wang, J.H. Li, Y.F. Hsu, Y.C. Wu, Y.C. Lai, and M.H. Chen, J. Eur. Ceram. Soc. 33, 1793 (2013).

    Article  Google Scholar 

  9. N. Raengthon, H.J. Brown-Shaklee, G.L. Brennecka, and D.P. Cann, J. Mater. Sci. 48, 2245 (2013).

    Article  Google Scholar 

  10. S.Q. Gao, S.H. Wu, Y.G. Zhang, H.X. Yang, and X.R. Wang, Mater. Sci. Eng. B-Adv. 176, 68 (2011).

    Article  Google Scholar 

  11. H.I. Hsiang, L.T. Mei, and Y.J. Chun, J. Am. Ceram. Soc. 92, 2768 (2009).

    Article  Google Scholar 

  12. C. Sun, X. Wang, C. Ma, and L. Li, J. Am. Ceram. Soc. 92, 1613 (2009).

    Article  Google Scholar 

  13. P. Jaita, A. Watcharapasorn, N. Kumar, S. Jiansirisomboon, and D.P. Cann, J. Am. Ceram. Soc. 99, 1615 (2016).

    Article  Google Scholar 

  14. R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, et al., J. Am. Ceram. Soc. 98, 3842 (2015).

    Article  Google Scholar 

  15. N. Raengthon, T. Sebastian, D. Cumming, I.M. Reaney, and D.P. Cann, J. Am. Ceram. Soc. 95, 3554 (2012).

    Article  Google Scholar 

  16. N. Raengthon and D.P. Cann, J. Electroceram. 28, 165 (2012).

    Article  Google Scholar 

  17. M. Acosta, J.D. Zang, W. Jo, and J. Rodel, J. Eur. Ceram. Soc. 32, 4327 (2012).

    Article  Google Scholar 

  18. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, and Z. Pei, J. Appl. Phys. 104, 044104 (2008).

    Article  Google Scholar 

  19. L. Li, D. Guo, W. Xia, Q. Liao, Y. Han, and Y. Peng, J. Am. Ceram. Soc. 95, 2107 (2012).

    Article  Google Scholar 

  20. B. Xiong, H. Hao, S.J. Zhang, H.X. Liu, and M.H. Cao, J. Am. Ceram. Soc. 94, 3412 (2011).

    Article  Google Scholar 

  21. H. Ogihara, C.A. Randall, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 110 (2009).

    Article  Google Scholar 

  22. Y. Hiruma, H. Nagata, and T. Takenaka, J. Appl. Phys. 104, 7 (2008).

    Article  Google Scholar 

  23. A. Ullah, A. Ullah, I.W. Kim, D.S. Lee, S.J. Jeong, C.W. Ahn, and D. Johnson, J. Am. Ceram. Soc. 97, 2471 (2014).

    Article  Google Scholar 

  24. J. Shi, H.Q. Fan, X. Liu, and A.J. Bell, J. Am. Ceram. Soc. 97, 848 (2014).

    Article  Google Scholar 

  25. T. Wang, H. Du, and X. Shi, J. Phys.: Conf. Ser. 152, 012065 (2009).

    Google Scholar 

  26. A. Zeb, S.J. Milne, and S. Zhang, J. Am. Ceram. Soc. 96, 2887 (2013).

    Article  Google Scholar 

  27. Y. Yuan, C.J. Zhao, X.H. Zhou, B. Tang, and S.R. Zhang, J. Electroceram. 25, 212 (2010).

    Article  Google Scholar 

  28. J.G. Hao, Z.J. Xu, R.Q. Chu, Y.J. Zhang, et al., J. Electron. Mater. 39, 347 (2010).

    Article  Google Scholar 

  29. J. König, M. Spreitzer, and D. Suvorov, J. Eur. Ceram. Soc. 31, 1987 (2011).

    Article  Google Scholar 

  30. A. Zeb and S.J. Milne, J. Mater. Sci.: Mater. Electron. 26, 9243 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51472078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhlis M. Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W.Q., Fang, F., Ismail, M.M. et al. Stable Dielectric Properties in the Intermediate Temperature Range of 50°C to 260°C for Na0.5Bi0.5TiO3-SrTiO3 Ceramics with Er2O3 Doping. J. Electron. Mater. 46, 6023–6028 (2017). https://doi.org/10.1007/s11664-017-5566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5566-x

Keywords

Navigation