Skip to main content
Log in

Vibrational and Raman Spectroscopic Study of Cubic Boron Nitride Under Pressure Using Density Functional Theory

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Pressure-dependent mechanical, vibrational and Raman spectroscopic study of the cubic boron nitride in context of recent experimental Raman spectroscopic has been performed using theab initio calculations based on density functional theory. Detailed analysis of the pressure-dependent mechanical and phonon properties shows that the pressure significantly affects the elastic constants and phonon frequencies. There is a systematic variation of elastic properties with pressure while a polynomial expression is used to fit the pressure dependence of the Raman shift. The longitudinal optical–transverse optical (LO-TO) splitting reduces with pressure, and the intensity of both LO and TO peaks start diminishing after 750 GPa. The phonon dispersion curves up to 1000 GPa indicate its dynamical stability. The lower slope of frequency versus pressure for the LO and TO modes at higher pressures suggests its use for pressure calibration at higher pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Miyata, K. Moriki, O. Mishima, M. Fujisawa, and T. Hattori, Phys. Rev. B 40, 12028 (1989).

    Article  Google Scholar 

  2. R.M. Wentzcovitch, M.L. Cohen, and P.K. Lam, Phys. Rev. B 36, 6058 (1987).

    Article  Google Scholar 

  3. J. Furthmüller, J. Hafner, and G. Kresse, Phys. Rev. B 50, 15606 (1994).

    Article  Google Scholar 

  4. K. Albe, Phys. Rev. B 55, 6203 (1997).

    Article  Google Scholar 

  5. G. Kern, G. Kresse, and J. Hafner, Phys. Rev. B 59, 8551 (1999).

    Article  Google Scholar 

  6. A. Janotti, S.-H. Wei, and D.J. Singh, Phys. Rev. B 63, 115207 (2001).

    Article  Google Scholar 

  7. E.V. Jakovenko, I.V. Aleksandrov, A.F. Goncharov, and S.M. Stishov, Zh. Eksp. Teor. Fiz. 95, 2097 (1989) [Sov. Phys. JETP 68, 1213 (1989)].

  8. E. Knittle, R. Wentzcovitch, R. Jeanloz, and M. Cohen, Nature 337, 349 (1989).

    Article  Google Scholar 

  9. A.F. Gonocharov, J.C. Crowhurst, J.K. Dewhurst, and S. Sharma, Phys. Rev. B 72, 100104(R) (2005).

    Article  Google Scholar 

  10. S. Mukhopadhyay and D.A. Stewart, Phy. Rev. Lett. 113, 025901 (2014).

    Article  Google Scholar 

  11. K. Karch and F. Bechstedt, Phys. Rev. B 56, 12 (1997).

    Article  Google Scholar 

  12. P.F. Wang, Z.H. Li, and Y.M. Zhu, Solid State Sci. 13, 1041 (2011).

    Article  Google Scholar 

  13. X.T. Luo and C.J. Li, J. Therm. Spray Technol. 21, 578 (2012).

    Article  Google Scholar 

  14. Y. Tian, et al., Nature 493, 385 (2013).

    Article  Google Scholar 

  15. S. Ono, K. Mibe, N. Hirao, and Y. Ohishi, J. Phys. Chem. Solids 76, 120 (2015).

    Article  Google Scholar 

  16. C.H. Lin and C.W. Liu, Sensors 10, 8797 (2010).

    Article  Google Scholar 

  17. L.H. Chen, Infrared Laser Eng. 37, 1 (2008).

    Google Scholar 

  18. A. Soltani, H.A. Barkad, M. Mattalah, B. Benbakhti, J.C. De Jaeger, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, A. BenMoussa, B. Giordanengo, and J.F. Hochedez, Appl. Phys. Lett. 92, 053501 (2008).

    Article  Google Scholar 

  19. J.A. Sanjurjo, E. López-Cruz, P. Vogl, and M. Cardona, Phys. Rev. B 28, 4579 (1983).

    Article  Google Scholar 

  20. I.V. Aleksandrov, A.F. Goncharov, E.V. Yakovenko, and S.M. Stishov, High-Pressure Research: Application to Earth and Planetary Sciences, ed. Y. Syono and M.H. Manghnani (Washington-Tokyo: Terrapub-AGU, 1992), pp. 409.

    Google Scholar 

  21. A.D. Alvarenga, M. Grimsditch, and A. Polian, J. Appl. Phys. 72, 1955 (1992).

    Article  Google Scholar 

  22. H. Herchen and M.A. Cappelli, Phys. Rev. B 47, 14193 (1993).

    Article  Google Scholar 

  23. T. Kawamoto, K.N. Matsukage, T. Nagai, K. Nishimura, T. Mataki, S. Ochiai, and T. Taniguchi, Rev. Sci. Instrum. 75, 2451 (2004).

    Article  Google Scholar 

  24. F. Datchi and B. Canny, Phys. Rev. B 69, 144106 (2004).

    Article  Google Scholar 

  25. Z.Y. Mijbil, J. Bababylon Univ. 18, 1686 (2010).

    Google Scholar 

  26. Z.Y. Mijbil, Chem. Mater. Res. 2, 30 (2012).

    Google Scholar 

  27. N. de Koker, J. Phys. Condens. Matter 24, 055401 (2012).

    Article  Google Scholar 

  28. P. Giannozzi, et al., J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  29. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  30. C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998)

  31. S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).

    Article  Google Scholar 

  32. X. Gonze, Phys. Rev. A 52, 1086 (1995).

    Article  Google Scholar 

  33. P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B 43, 7231 (1991).

  34. V.A. Pesin, Sverktverd. Mater. 6, 5 (1980).

    Google Scholar 

  35. S. Daoud, K. Loucif, N. Bioud, and N. Lebgaa, Acta Phys. Pol. A 122, 109 (2012).

    Article  Google Scholar 

  36. E. Knittle, R.M. Wentzcovitsch, R. Jeanloz, and M.L. Cohen, Nature 337, 349 (1989).

    Article  Google Scholar 

  37. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1994).

    Article  Google Scholar 

  38. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  Google Scholar 

  39. S. Daoud and N. Bioud, Ukr. J. Phys. 59, 418 (2014)

  40. L.Q. Zhang, Y. Cheng, and Z.W. Niu, J. Atomic Mol. Sci. 5, 81 (2014).

    Article  Google Scholar 

  41. W.J. Tropf, M.F. Thomas, and T.J. Harris, Properties of Crystals and Glasses, Handbook of Optics, Vol. IV (New York: McGraw-Hill, 2004).

    Google Scholar 

  42. W.A. Brantley, J. Appl. Phys. 44, 534 (1973).

    Article  Google Scholar 

  43. S. Singh and M. Sarwan, J. Optoelectron. Adv. Mater. 12, 2106 (2010).

    Google Scholar 

  44. R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford: Oxford University Press, 2005).

    Google Scholar 

  45. D.A. Broido, L. Lindsay, and A. Ward, Phys. Rev. B 86, 115203 (2012).

    Article  Google Scholar 

  46. L. Bergman and R.J. Nemanich, Annu. Rev. Mater. Sci. 26, 5511996 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Ministry of Earth Sciences and Science and the Engineering Research Board (SERB), Govt. of India, for financial assistance. One of us, VM, acknowledge the young scientist award from SERB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafulla K. Jha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, S.B., Mankad, V. & Jha, P.K. Vibrational and Raman Spectroscopic Study of Cubic Boron Nitride Under Pressure Using Density Functional Theory. J. Electron. Mater. 46, 5259–5264 (2017). https://doi.org/10.1007/s11664-017-5527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5527-4

Keywords

Navigation