Skip to main content

Advertisement

Log in

Microstructural Evolution and Migration Mechanism Study in a Eutectic Sn-37Pb Lap Joint Under High Current Density

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The microstructural evolution in eutectic Sn-37Pb solder under high current density seriously threatens the reliability of solder interconnections, but atomic electromigration has often been confused with thermomigration. In this paper, after decoupling the effect of the non-uniform temperature distribution in a Cu/Sn-37Pb/Cu lap joint from the current stress, the microstructural evolution was investigated under an average current density of 1.84 × 104 A cm−2 for 0–24 h. The decomposition and recombination of the Pb-rich phase occurred at the cathode and the anode, respectively. The corresponding migration mechanism was proposed from the viewpoint of energy and was explained by the interactions among the potential energies of ripening, electron wind force, and back stress. Our study may be helpful for understanding the migration mechanism and reliability of eutectic two-phase solder joints and provides supporting data for interpreting the acceleration tests of Sn-37Pb solder joints under electromigration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.Y. Ouyang, K.N. Tu, and Y.S. Lai, Mater. Chem. Phys. 136, 210 (2012).

    Article  Google Scholar 

  2. Y.T. Chiu, K.L. Lin, and Y.S. Lai, J. Appl. Phys. 111, 043517 (2012).

    Article  Google Scholar 

  3. S. Nurmi, J. Sundelin, E. Ristolainen, and T. Lepistö, Microelectron. Reliab. 44, 485 (2004).

    Article  Google Scholar 

  4. K. Kanlayasiri and K. Sukpimai, J. Alloys. Compd. 668, 169 (2016).

    Article  Google Scholar 

  5. A.T. Tan, A.W. Tan, and F. Yusof, Adv. Mater. 16, 033505 (2016).

    Google Scholar 

  6. J. Stein, U. Welzel, A. Leineweber, W. Huegel, and E.J. Mittemeijer, Acta Mater. 86, 102 (2015).

    Article  Google Scholar 

  7. Y.C. Liang, H.W. Lin, H.P. Chen, C. Chen, K.N. Tu, and Y.S. Lai, Scr. Mater. 69, 25 (2013).

    Article  Google Scholar 

  8. C. Chen, H.Y. Hsiao, Y.W. Chang, F.Y. Ouyang, and K.N. Tu, Mater. Sci. Eng. R Rep. 73, 85 (2012).

    Article  Google Scholar 

  9. C.Z. Liu and J. Chen, Mater. Sci. Eng., A 448, 340 (2007).

    Article  Google Scholar 

  10. Z.H. Zhang, H.J. Cao, M.Y. Li, Y. Wang, and Z.Q. Liu, J. Appl. Phys. 116, 054909 (2014).

    Article  Google Scholar 

  11. Y.C. Chan and D. Yang, Prog. Mater Sci. 55, 428 (2010).

    Article  Google Scholar 

  12. F.Y. Ouyang, K.N. Tu, C.L. Kao, and Y.S. Lai, Appl. Phys. Lett. 90, 211914 (2007).

    Article  Google Scholar 

  13. P. Vianco, J. Rejent, G. Zender, and A. Kilgo, J. Mater. Res. 20, 1563 (2005).

    Article  Google Scholar 

  14. F.Y. Ouyang, K. Chen, K.N. Tu, and Y.S. Lai, Appl. Phys. Lett. 91, 231919 (2007).

    Article  Google Scholar 

  15. F.Y. Ouyang and C.-L. Kao, J. Appl. Phys. 110, 123525 (2011).

    Article  Google Scholar 

  16. X. Gu, K.C. Yung, Y.C. Chan, and D. Yang, J. Mater. Sci.: Mater. Electron. 22, 217 (2011).

    Google Scholar 

  17. X. Gu and Y.C. Chan, J. Appl. Phys. 105, 093537 (2009).

    Article  Google Scholar 

  18. Y.W. Lin, J.H. Ke, H.Y. Chuang, Y.S. Lai, and C.R. Kao, J. Appl. Phys. 107, 073516 (2010).

    Article  Google Scholar 

  19. X. Zhu, H. Kotadia, S. Xu, H. Lu, S.H. Mannan, C. Bailey, and Y.C. Chan, Thin Solid Films 565, 193 (2014).

    Article  Google Scholar 

  20. C.Y. Liu, C. Chen, and K.N. Tu, J. Appl. Phys. 88, 5730 (2000).

    Google Scholar 

  21. T. Tian, K. Chen, A.A. MacDowell, D. Parkinson, Y.S. Lai, and K.N. Tu, Scr. Mater. 65, 646 (2011).

    Article  Google Scholar 

  22. C. Chen, H.M. Tong, and K.N. Tu, Annu. Rev. Mater. Res. 40, 531 (2010).

    Article  Google Scholar 

  23. T.L. Yang, J.H. Ke, W.L. Shih, Y.S. Lai, and C.R. Kao, J. Appl. Phys. 114, 053501 (2013).

    Article  Google Scholar 

  24. X.W. Hu, W.J. Chen, X. Yu, Y.L. Li, Y. Liu, and Z.X. Min, J. Alloys. Compd. 600, 13 (2014).

    Article  Google Scholar 

  25. H.B. Huntington and A.R. Grone, J. Phys. Chem. Solids 20, 76 (1961).

    Article  Google Scholar 

  26. M.S. Yoon, M.K. Ko, O.H. Kim, Y.B. Park, W.D. Nix, and Y.C. Joo, J. Electron. Mater. 36, 562 (2007).

    Article  Google Scholar 

  27. K. Chen, N. Tamura, M. Kunz, K.N. Tu, and Y.S. Lai, J. Appl. Phys. 106, 023502 (2009).

    Article  Google Scholar 

  28. R. Mahmudi, M. Shalbafi, M. Karami, and A.R. Geranmayeh, Mater. Des. 75, 184 (2015).

    Article  Google Scholar 

  29. K.N. Tu, Solder Joint Technology Materials, Properties and Reliability (New York: Springer, 2007), pp. 211–310.

    Google Scholar 

  30. T. Nishizawa, Thermodynamics of Microstructures (Materials Park: ASM International, 2008), pp. 123–166.

    Google Scholar 

  31. K. Jung and H. Conrad, J. Electron. Mater. 30, 1303 (2001).

    Article  Google Scholar 

  32. M.Y. Li, H. Chang, X.C. Pang, L. Wang, and Y.G. Fu, J. Phys. D Appl. Phys. 44, 115501 (2011).

    Article  Google Scholar 

  33. H.Y. Hsiao and C. Chen, Appl. Phys. Lett. 90, 152105 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China under Grant No. 51305103, the Young and Middle-aged Scholars Education Research Project of the Education Department of Fujian Province under Grant No. JAT160012, the University Distinguished Young Research Talent Training Program of Fujian Province under Grant No. JAT160835, and the Technology Project of Education Department of Fujian Province under Grant No. JAT160831.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Cao, H., Yang, H. et al. Microstructural Evolution and Migration Mechanism Study in a Eutectic Sn-37Pb Lap Joint Under High Current Density. J. Electron. Mater. 46, 5028–5038 (2017). https://doi.org/10.1007/s11664-017-5511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5511-z

Keywords

Navigation