Skip to main content
Log in

Synthesis of Zinc Oxide Nanoparticles and Their Morphological, Optical, and Electrical Characterizations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, zinc oxide (ZnO) nanoparticles were synthesized chemically by a sol gel method and their structural, morphological, and optical properties were characterized. The as-prepared ZnO nanoparticles were further transformed into the Cu/ZnO/Cr/Au heterostructure to investigate their electrical properties. The electrical characteristics of the heterostructure were determined at room temperature. The results showed that the obtained current–voltage (I–V) characteristics of Cu/ZnO/Cr/Au heterostructure resemble that of a photodiode with an ideality factor of 5.24. The forward resistance (under light of ≈570 nm wavelength) is calculated as 330 KΩ, while under darkness, the forward resistance is estimated as 5 KΩ. The obtained results confirmed that the developed heterostructured device is a sterling solicitant for light harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, and Y. Li, Angew. Chem. 117, 6208 (2005).

    Article  Google Scholar 

  2. J. You, C.C. Chen, L. Dou, S. Murase, H.S. Duan, S.A. Hawks, T. Xu, H.J. Son, L. Yu, G. Li, and Y. Yang, Adv. Mater. 24, 5267 (2012).

    Article  Google Scholar 

  3. B.S. Zou, R.B. Little, J.P. Wang, and M.A. El-Sayed, Int. J. Quantum Chem. 72, 439 (1999).

    Article  Google Scholar 

  4. D.L. Schulz, C.J. Curtis, R.A. Flitton, H. Wiesner, J. Keane, R.J. Matson, K.M. Jones, P.A. Parilla, R. Noufi, and D.S. Ginley, J. Electron. Mater. 27, 433 (1998).

    Article  Google Scholar 

  5. S.B. Rana, A. Singh, and N. Kaur, J. Mater. Sci. Mater. Electron. 24, 44 (2013).

    Article  Google Scholar 

  6. Z.L. Wang, J. Phys. Condens. Matter 16, R829 (2004).

    Article  Google Scholar 

  7. Z. Suo and W. Lu, J. Nanopart. Res. 2, 333 (2000).

    Article  Google Scholar 

  8. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  Google Scholar 

  9. Z. Zhang, Z. Wei, and M. Wan, Macromolecules 35, 5937 (2002).

    Article  Google Scholar 

  10. A.K. Radzimska and T. Jesionowski, Materials 7, 2833 (2014).

    Article  Google Scholar 

  11. Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, and C. Wang, Nanotechnology 14, 11 (2003).

    Article  Google Scholar 

  12. W.J.E. Beek, M.M. Wienk, and R.A.J. Janssen, Adv. Mater. 16, 1009 (2004).

    Article  Google Scholar 

  13. S. Sonmezoglu, Appl. Phys. Express 4, 104104 (2011).

    Article  Google Scholar 

  14. E.A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998).

    Article  Google Scholar 

  15. S. Sahoo and A.K. Bhowmick, J. Appl. Polym. Sci. 106, 3077 (2007).

    Article  Google Scholar 

  16. A. Becheri, M. Durr, P.L. Nostro, and P. Baglioni, J. Nanopart. Res. 10, 679 (2008).

    Article  Google Scholar 

  17. J. Behari, Indian J. Exp. Biol. 48, 1008 (2010).

    Google Scholar 

  18. L. Znaidi, Mat. Sci. Eng. B 174, 18 (2010).

    Article  Google Scholar 

  19. L.H. Cai, S. Panyukov, and M. Rubinstein, Macromolecules 48, 847 (2015).

    Article  Google Scholar 

  20. S. Arya, S. Khan, S. Kumar, R. Verma, and P. Lehana, Bull. Mater. Sci. 36, 535 (2013).

    Article  Google Scholar 

  21. R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, and H.S. Shin, Appl. Surf. Sci. 253, 7622 (2007).

    Article  Google Scholar 

  22. G.S. Prakash, (M.Sc. Thesis, National Institute of Technology, Rourkela, 2012). http://ethesis.nitrkl.ac.in/3259/.

  23. ASTM Data File Nos. 45-1287, 32-0458.

  24. A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Lumin. 87, 454 (2000).

    Article  Google Scholar 

  25. G.H. Schoenmakers, D. Vanmaekelbergh, and J.J. Kelly, J. Phys. Chem. 100, 3215 (1996).

    Article  Google Scholar 

  26. M. Wang, E.K. Na, J.S. Kim, E.J. Kim, S.H. Hahn, C. Park, and K. Koo, Mater. Lett. 61, 4094 (2007).

    Article  Google Scholar 

  27. Z. Yuan, M. Fu, Y. Ren, W. Huang, and C. Shuai, Microelectron. Eng. 163, 32 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Centre of Excellence in Nanoelectronics (CEN) under the INUP Program at the Indian Institute of Technology, Bombay (IITB), India, for providing their facilities.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Arya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, S., Lehana, P.K. & Rana, S.B. Synthesis of Zinc Oxide Nanoparticles and Their Morphological, Optical, and Electrical Characterizations. J. Electron. Mater. 46, 4604–4611 (2017). https://doi.org/10.1007/s11664-017-5469-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5469-x

Keywords

Navigation