Skip to main content
Log in

Zinc Oxide Nanorods Grown on Printed Circuit Board for Extended-Gate Field-Effect Transistor pH Sensor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanorods (NRs) were grown directly on printed circuit boards with a 35-μm-thick copper layer using a seedless galvanic-cell hydrothermal process. The hexagonal structure of the synthesized ZnO NRs was observed by scanning electron microscopy. The microstructural characteristics of the as-grown ZnO NRs were investigated by x-ray diffraction analysis, revealing preferred (002) growth direction. Raman and photoluminescence spectra confirmed the high crystalline quality of the ZnO NRs. As-grown ZnO NRs were then grown for 7 h using the galvanic effect for use as the pH membrane of an extended-gate field-effect transistor pH sensor (pH-EGFET). The current–voltage characteristics showed sensitivity of 15.4 mV/pH and 0.26 (μA)1/2/pH in the linear and saturated region, respectively. Due to their cost effectiveness, low-temperature processing, and ease of fabrication, such devices are potential candidates for use as flexible, low-cost, disposable biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fernández-García, A. Martínez-Arias, J.C. Hanson, and J.A. Rodriguez, Chem. Rev. 104, 4063 (2004).

    Article  Google Scholar 

  2. M.M. Rahman, A.J. Ahammad, J.H. Jin, S.J. Ahn, and J.J. Lee, Sensors (Basel) 10, 4855 (2010).

    Article  Google Scholar 

  3. S.J. Pearton, W.T. Lim, J.S. Wright, L.C. Tien, H.S. Kim, D.P. Norton, H.T. Wang, B.S. Kang, F. Ren, J. Jun, J. Lin, and A. Osinsky, J. Electron. Mater. 37, 1426 (2008).

    Article  Google Scholar 

  4. Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M.M. Choi, Analyst 133, 126 (2008).

    Article  Google Scholar 

  5. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, and R. Liu, Sci. Rep. 4, 4596 (2014).

    Article  Google Scholar 

  6. D.C. Reynolds, D.C. Look, B. Jogai, J.E. Hoelscher, R.E. Sherriff, M.T. Harris, and M.J. Callahan, J. Appl. Phys. 88, 2152 (2000).

    Article  Google Scholar 

  7. Q.C. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, and R.P.H. Chang, Chem. Mater. 17, 1001 (2005).

    Article  Google Scholar 

  8. S.P. Ghosh, K.C. Das, N. Tripathy, G. Bose, D.H. Kim, T.I. Lee, J.M. Myoung, and J.P. Kar, IOP Conf. Ser. Mater. Sci. Eng. 115, 012035 (2016).

    Article  Google Scholar 

  9. P.D. Batista and M. Mulato, Appl. Phys. Lett. 87, 143508 (2005).

    Article  Google Scholar 

  10. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, and G. Neri, Sens. Actuators B Chem. 196, 413 (2014).

    Article  Google Scholar 

  11. S.N. Sarangi, S. Nozaki, and S.N. Sahu, J. Biomed. Nanotechnol. 11, 988 (2015).

    Article  Google Scholar 

  12. P. Sundara Venkatesh, C.L. Dong, C.L. Chen, W.F. Pong, K. Asokan, and K. Jeganathan, Mater. Lett. 116, 206 (2014).

    Article  Google Scholar 

  13. Z.W. Liu and C.K. Ong, Mater. Lett. 61, 3329 (2007).

    Article  Google Scholar 

  14. S.K. Mohanta, D.C. Kim, H.K. Cho, S.J. Chua, and S. Tripathy, J. Cryst. Growth 310, 3208 (2008).

    Article  Google Scholar 

  15. A. Rivera, J. Zeller, A. Sood, and M. Anwar, J. Electron. Mater. 42, 894 (2013).

    Article  Google Scholar 

  16. O. Lupan, T. Pauporté, B. Viana, I.M. Tiginyanu, V.V. Ursaki, and R. Cortès, ACS Appl. Mater. Interfaces 2, 2083 (2010).

    Article  Google Scholar 

  17. Z. Zheng, Z.S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, Sci. Rep. 3, 2434 (2013).

    Article  Google Scholar 

  18. X.H. Huang, J.B. Wu, Y. Lin, and R.Q. Guo, Int. J. Electrochem. Sci. 7, 6611 (2012).

    Google Scholar 

  19. Z.L. Wang, Mater. Today 7, 26 (2004).

    Article  Google Scholar 

  20. Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, and Z.L. Wang, J. Mater. Chem. 19, 9260 (2009).

    Article  Google Scholar 

  21. H.J. Fan, F. Fleischer, W. Lee, K. Nielsch, R. Scholz, M. Zacharias, U. Gösele, A. Dadgar, and A. Krost, Superlattices Microstruct. 36, 95 (2004).

    Article  Google Scholar 

  22. S. Xu, C. Lao, B. Weintraub, and Z.L. Wang, J. Mater. Res. 23, 2072 (2011).

    Article  Google Scholar 

  23. A. Fulati, S.M. Ali, M. Riaz, G. Amin, O. Nur, and M. Willander, Sensors (Basel) 9, 8911 (2009).

    Article  Google Scholar 

  24. B. Weintraub, Y. Deng, and Z.L. Wang, J. Phys. Chem. C 111, 10162 (2007).

    Article  Google Scholar 

  25. Z.J. Chew and L. Li, Mater. Lett. 76, 226 (2012).

    Article  Google Scholar 

  26. E.M. Guerra, G.R. Silva, and M. Mulato, Solid State Sci. 11, 456 (2009).

    Article  Google Scholar 

  27. J. van der Spiegel, I. Lauks, P. Chan, and D. Babic, Sens. Actuators 4, 291 (1983).

    Article  Google Scholar 

  28. B.-R. Huang, J.-C. Lin, and Y.-K. Yang, J. Electrochem. Soc. 160, B78 (2013).

    Article  Google Scholar 

  29. M.H. Asif, O. Nur, M. Willander, and B. Danielsson, Biosens. Bioelectron. 24, 3379 (2009).

    Article  Google Scholar 

  30. S.M. Usman Ali, O. Nur, M. Willander, and B. Danielsson, IEEE Trans. Nanotechnol. 8, 678 (2009).

    Article  Google Scholar 

  31. E.H. Yoo and S.Y. Lee, Sensors (Basel) 10, 4558 (2010).

    Article  Google Scholar 

  32. Y. Zhang, M.K. Ram, E.K. Stefanakos, and D.Y. Goswami, J. Nanomater. 2012, 1 (2012).

    Google Scholar 

  33. L. Shi, K. Bao, J. Cao, and Y. Qian, CrystEngComm 11, 2009 (2009).

    Article  Google Scholar 

  34. N. Bel Hadj Tahar, R. Bel Hadj Tahar, A. Ben Salah, and A. Savall, J. Am. Ceram. Soc. 91, 846 (2008).

    Article  Google Scholar 

  35. Y.-J. Lin, C.-L. Tsai, Lu Y.-M. Lu, and C.-J. Liu, J. Appl. Phys. 99, 093501 (2006).

    Article  Google Scholar 

  36. D.E. Yates, S. Levine, and T.W. Healy, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 70, 1807 (1974).

    Google Scholar 

  37. J.L. Chiang, Y.C. Chen, J.C. Chou, and C.C. Cheng, Jpn. J. Appl. Phys. 41, 541 (2002).

    Article  Google Scholar 

  38. P.C. Yao, J.L. Chiang, and M.C. Lee, Solid State Sci. 28, 47 (2014).

    Article  Google Scholar 

  39. J. Zhou, N.S. Xu, and Z.L. Wang, Adv. Mater. 18, 2432 (2006).

    Article  Google Scholar 

  40. N.H. Al-Hardan, M.A. Abdul Hamid, N.M. Ahmed, A. Jalar, R. Shamsudin, N.K. Othman, L. Kar Keng, W. Chiu, and H.N. Al-Rawi, Sensors (Basel) 16, 839 (2016).

    Google Scholar 

  41. H.H. Li, C.E. Yang, C.C. Kei, C.Y. Su, W.S. Dai, J.K. Tseng, P.Y. Yang, J.C. Chou, and H.C. Cheng, Thin Solid Films 529, 173 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Van Thanh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Thanh, P., Nhu, L.T.Q., Mai, H.H. et al. Zinc Oxide Nanorods Grown on Printed Circuit Board for Extended-Gate Field-Effect Transistor pH Sensor. J. Electron. Mater. 46, 3732–3737 (2017). https://doi.org/10.1007/s11664-017-5369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5369-0

Keywords

Navigation