Skip to main content
Log in

Anisotropic In Situ-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An impedimetric aptasensor has been used to study the effect of charge transfer on the binding of prostate-specific antigen (PSA) to its aptamer. Full understanding of this mechanism will be beneficial to further improve its sensitivity for PSA detection in human semen at physiologically relevant concentrations. Bare gold electrodes (SPAuEs) and gold nanoparticles (AuNPs)-coated screen-printed carbon ink electrodes (AuNPs/SPCEs) were coated with aptamer solution at various concentrations and the sensor response to increasing PSA concentration in buffer solution examined. AuNPs were deposited onto carbon electrodes in 10 cycles. AuNPs/SPCEs were then coated with a self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid prior to aptamer immobilization at dose of 5 μg mL−1. The results indicate that anisotropic AuNPs/SPCEs outperform bare gold electrodes in terms of decreased amount of aptamer bunches as well as the number of intermediate PSA-aptamer complexes formed on the electrode surface. The key finding is that the fabricated aptasensor is sensitive enough [limit of detection (LoD) 1.95 ng mL−1] for early diagnosis of prostate cancer and displays linear response in the physiologically relevant concentration range (0 ng mL−1 to 10 ng mL−1), as shown by the calibration curve of the relative change in electron transfer resistance (ΔR CT) versus PSA concentration when aptamer/SAM/AuNPs/SPCEs were exposed to buffer containing PSA at different concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diet, Nutrition, Physical Activity and Prostate Cancer (World Cancer Research Fund, 2014). http://www.wcrf. org/sites/default/files/Prostate-Cancer-2014-Report.pdf. Accessed 1 Sept 2016

  2. S.P. Balk, J. Clin. Oncol. 21, 383 (2003).

    Article  Google Scholar 

  3. R.P. Gallagher and N. Fleshner, CMAJ 159, 807 (1998).

    Google Scholar 

  4. J.A. Ludwig and J.N. Weinstein, Nat. Rev. Cancer 5, 845 (2005).

    Article  Google Scholar 

  5. G. Botchorishvili, M.P. Matikainen, and H. Lilja, Curr. Opin. Urol. 19, 221 (2009).

    Article  Google Scholar 

  6. M.J. Barry, Clin. Pract. 344, 1373 (2001).

    Google Scholar 

  7. P. Gunnar Aus, J.-E. Damber, A. Khatami, H. Lilja, J. Stranne, and J. Hugosson, Am. Med. Assoc. 165, 1857 (2005).

    Google Scholar 

  8. A.D. Ellington and J.W. Szostak, Nature 346, 818 (1990).

    Article  Google Scholar 

  9. M. Mascini, Aptamers in Bioanalysis (New York: Wiley, 2009), pp. 3–5.

    Book  Google Scholar 

  10. K.M. Song, S. Lee, and C. Ban, Sensors 12, 612 (2012).

    Article  Google Scholar 

  11. M. Famulok, Acc. Chem. Res. 33, 591 (2000)

  12. J.J. Li, X. Fang, and W. Tan, Biochem. Biophys. Res. Commun. 292, 31 (2002).

    Article  Google Scholar 

  13. C.A. Savran, S.M. Knudsen, A.D. Ellington, and S.R. Manalis, Anal. Chem. 76, 3194 (2004).

    Article  Google Scholar 

  14. C. Tuerk and L. Gold, Science 249, 505 (1990).

    Article  Google Scholar 

  15. A.-E. Radi, Int. J. Electrochem. 2011, 1 (2011).

    Article  Google Scholar 

  16. M.M. Costa, M. Guix, P. Kara, and A. De Escosura-mu, Biosens. Bioelectron. 26, 1715 (2010).

    Article  Google Scholar 

  17. Z. Yang, B. Kasprzyk-Hordern, S. Goggins, C. G. Frost, and P. Estrela, Analyst 140, 2628 (2015)

  18. A. Santos, J.J. Davis, and P.R. Bueno, J. Anal. Bioanal. Tech. S7, 1 (2014).

    Article  Google Scholar 

  19. D.W. Kimmel, G. LeBlanc, M.E. Meschievitz, and D.E. Clifferl, Anal. Chem. 84, 685 (2012).

    Article  Google Scholar 

  20. E. Katz and I. Willner, Electroanalysis 15, 913 (2003).

    Article  Google Scholar 

  21. Z. Chen, Y. Lei, X. Chen, Z. Wang, and J. Liu, Biosens. Bioelectron. 36, 35 (2012).

    Article  Google Scholar 

  22. T. Lien, N. Xuan Viet, and M. Chikae, J. Biosens. Bioelectron. 2, 2 (2011).

    Google Scholar 

  23. L.T.N. Truong, M. Chikae, Y. Ukita, and Y. Takamura, Talanta 85, 2576 (2011).

    Article  Google Scholar 

  24. T.T.N. Lien, Y. Takamura, E. Tamiya, and M.C. Vestergaard, Anal. Chim. Acta 892, 69 (2015).

    Article  Google Scholar 

  25. N. Savory, K. Abe, K. Sode, and K. Ikebukuro, Biosens. Bioelectron. 26, 1386 (2010).

    Article  Google Scholar 

  26. P. Jolly, N. Formisano, J. Tkáč, P. Kasák, C.G. Frost, and P. Estrela, Sens. Actuators B Chem. 209, 306 (2015).

    Article  Google Scholar 

  27. B. Liu, L. Lu, E. Hua, S. Jiang, and G. Xie, Microchim. Acta 178, 163 (2012).

    Article  Google Scholar 

  28. P. Jolly, N. Formisano, and P. Estrela, Chem. Pap. 69, 77 (2015).

    Article  Google Scholar 

  29. Y. Shamoo, Encycl. Life Sci. 1 (2002)

  30. S.J. Ding, B.W. Chang, C.C. Wu, M.F. Lai, and H.C. Chang, Anal. Chim. Acta 554, 43 (2005).

    Article  Google Scholar 

  31. M.I. Prodromidis, Electrochim. Acta 55, 4227 (2010).

    Article  Google Scholar 

  32. B. Pejcic and R. De Marco, Electrochim. Acta 51, 6217 (2006).

    Article  Google Scholar 

  33. G. Tsekenis, G. Garifallou, F. Davis, P.A. Millner, T.D. Gibson, and S.P.J. Higson, Anal. Chem. 80, 2058 (2008).

    Article  Google Scholar 

  34. R. Elshafey, C. Tlili, A. Abulrob, A.C. Tavares, and M. Zourob, Biosens. Bioelectron. 39, 220 (2013).

    Article  Google Scholar 

  35. E.C. Rama, M.B. González-García, and A. Costa-García, Sens. Actuators B Chem. 201, 567 (2014).

    Article  Google Scholar 

  36. F. Rohrbach, H. Karadeniz, A. Erdem, M. Famulok, and G. Mayer, Anal. Biochem. 421, 454 (2012).

    Article  Google Scholar 

  37. M. Peeters, B. Van Grinsven, T.J. Cleij, K.L. Jiménez-Monroy, P. Cornelis, E. Pérez-Ruiz, G. Wackers, R. Thoelen, W. De Ceuninck, J. Lammertyn, and P. Wagner, ACS Appl. Mater. Interfaces 7, 10316 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED, Grant No. 103.99-2012.12) and The Flemish Interuniversity Council (VLIR-UOS, Grant No. ZEIN2013RIP022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lien T. N. Truong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1030 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, T.T.N., Van Phi, T., Nguy, T.P. et al. Anisotropic In Situ-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor. J. Electron. Mater. 46, 3542–3552 (2017). https://doi.org/10.1007/s11664-016-5187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5187-9

Keywords

Navigation