Skip to main content
Log in

Creating a Multiband Perfect Metamaterial Absorber at K Frequency Band Using Defects in the Structure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a simple method to achieve a multiband perfect metamaterial absorber for use in the K band by applying defects to the absorber structure. Open boundary conditions with an excitation port are used for simulation of the whole considered structure. A defect was then introduced into the structure to obtain multiband absorption. Two perfect absorption peaks were observed at 19.8 GHz and 23.1 GHz for the structure with a defect of 2 × 2 unit cells. The multiple resonance frequencies could be tuned by varying the defect dimensions. In addition, it was found that the absorber structure is insensitive to the polarization angle of the incident electromagnetic wave over a wide range due to the symmetry of the configuration. This represents a simpler method to create a multifrequency absorber compared with previous works. To the best of our knowledge, this is the first study considering the influence of structural defects on the absorption frequencies of a metamaterial absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.G. Veselago, Sov. Phys. USPEKI 10, 509 (1968).

    Article  Google Scholar 

  2. D.R. Smith, J.B. Pendry, and M.C.K. Wiltshire, Science 305, 788 (2004).

    Article  Google Scholar 

  3. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  4. A. Alu and N. Engheta, Microw. Opt. Technol. Lett. 35, 460 (2002).

    Article  Google Scholar 

  5. T.M. Cuong, N.T. Thuy, and L.A. Tuan, J. Electron. Mater. 45, 2591 (2016).

    Article  Google Scholar 

  6. C.M. Watts, X. Liu, and W.J. Padilla, Adv. Mater. 24, OP98 (2012).

    Google Scholar 

  7. W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, Appl. Phys. A 118, 443 (2015).

    Article  Google Scholar 

  8. L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, Appl. Phys. A 121, 233 (2015).

    Article  Google Scholar 

  9. J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, J. Electron. Mater. 44, 4269 (2015).

    Article  Google Scholar 

  10. X. Wang, H. Zhou, M. Yan, N. Fu, M. Li, and X. Wang, Prog. Electromagn. Res. Lett. 49, 119 (2014).

    Article  Google Scholar 

  11. F. Dincer, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, J. Electron. Mater. (2014). doi:10.1007/s11664-014-3316-x.

    Google Scholar 

  12. N. Mattiucci, M.J. Bloemer, N. Akozbek, and G. D’Aguanno, Sci. Rep. 3, 3203 (2013).

    Article  Google Scholar 

  13. C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, Sci. Rep. 6, 21431 (2016).

    Article  Google Scholar 

  14. S. Ayhan, S. Scherr, P. Pahl, S. Walde, M. Pauli, and T. Zwick, Sens. J. IEEE 15, 937 (2015).

    Article  Google Scholar 

  15. Y. Dong and T. Itoh, IEEE Trans. Antennas Propag. 60, 2886 (2012).

    Article  Google Scholar 

  16. H.L. Dang, H.T. Nguyen, V.D. Nguyen, S.T. Bui, D.T. Le, Q.M. Ngo, and D.L. Vu, Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 015015 (2016).

    Article  Google Scholar 

  17. P. Pitchappa, C. Ho, P. Kropelnicki, N. Singh, D. Kwong, and C. Lee, J. Appl. Phys. 115, 193109 (2014).

    Article  Google Scholar 

  18. H.F. Álvarez, M.E. Cos Gómez, and F.A. Las-Heras, Materials 8, 1590 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by the Vietnam National Foundation for Science and Technology Development (Grant No. 103.99-2011.02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manh Cuong Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, M.C., Nguyen, T.T., Ho, T.H. et al. Creating a Multiband Perfect Metamaterial Absorber at K Frequency Band Using Defects in the Structure. J. Electron. Mater. 46, 413–417 (2017). https://doi.org/10.1007/s11664-016-4863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4863-0

Keywords

Navigation