Skip to main content
Log in

Optoelectronic Properties of Color-Tunable Mixed Ligand-Based Light-Emitting Zinc Complexes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of mixed ligand-based zinc complexes (Zn1-Zn5); [(8-hydroxyquinolinato)(2-(2-hydroxyphenyl)benzimidazolato)zinc(II)] (Zn1), [(5-chloro-8-hydroxyquinolinato)(2-(2-hydroxyphenyl)benzimidazolato)zinc(II)] (Zn2), [(5,7-dichloro-8-hydroxyquinolinato)(2-(2-hydroxyphenyl)benzimidazolato)zinc(II)] (Zn3), [(2-methyl-8-hydroxyquinolinato)(2-(2-hydroxyphenyl)benzimidazolato)zinc(II)] (Zn4) and [(5,7-dimethyl-8-hydroxyquinolinato)(2-(2-hydroxyphenyl)benzimidazolato)zinc(II)] (Zn5) were synthesized and characterized. The photophysical properties of zinc complexes were examined by ultraviolet–visible absorption and photoluminescence emission spectroscopy. All prepared metal complexes produced intense luminescence on excitation with a UV light source. In this study, the color-tunable characteristics of metal complexes were investigated by introducing the electron-donating and electron-withdrawing groups on the 8-hydroxyquinoline ligand. The emission spectra of metal complexes showed emission wavelength at 500 nm for [ZnHBI(q)], 509 nm for [ZnHBI(Clq)], 504 nm for [Zn(HBI)(Cl2q)], 496 nm for [ZnHBI (Meq)] and 573 nm for [ZnHBI(Me2Q)] materials. A temperature-dependent PL spectrum was used to study the emission profile of zinc complex and observed that variation in the temperature altered the position and the intensity of emission peak. The synthesized metal complex also exhibited good thermal stability (>300°C). Photophysical characteristics of color-tunable light-emitting zinc complexes suggested that these materials could be efficiently used for emissive display device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.T. Hao, L.W. Tan, K.S. Ong, and F.R. Zhu, J. Crystal Growth 30, 44 (2006).

    Article  Google Scholar 

  2. H. Klauk, Organic Electronics-Materials, Manufacturing and Applications (Weinheim: Wiley, 2006), p. 446.

    Book  Google Scholar 

  3. L.L. Chua, J. Zaumseil, J. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, and R.H. Friend, Nature 434, 194 (2005).

    Article  Google Scholar 

  4. C.D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhim, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, Nature 421, 829 (2003).

    Article  Google Scholar 

  5. C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).

    Article  Google Scholar 

  6. K.T. Kamtekar, A.P. Monkman, and M.R. Bryce, Adv. Mater. 22, 572 (2010).

    Article  Google Scholar 

  7. L.S. Hung and C.H. Chen, Mater. Sci. Eng. 39, 143 (2002).

    Article  Google Scholar 

  8. S.-H. Liao, J.-R. Shiu, S.-W. Liu, S.-J. Yeh, Y.-H. Chen, C.-T. Chen, T.J. Chow, and C.-I. Wu, J. Am. Chem. Soc. 131, 763 (2009).

    Article  Google Scholar 

  9. S. Wang, Coord. Chem. Rev. 215, 79 (2001).

    Article  Google Scholar 

  10. F. Zhang, Z. Xu, D. Zhao, S. Zhao, W. Jiang, G. Yuan, D. Song, Y. Wang, and X. Xu, J. Phys. D Appl. Phys. 40, 4485 (2007).

    Article  Google Scholar 

  11. X. Chen, D. Qiu, L. Ma, Y. Cheng, Y. Geng, Z. Xie, and L. Wang, Trans. Met. Chem. 31, 639 (2006).

    Article  Google Scholar 

  12. V. Nishal, D. Singh, R.K. Saini, S. Bhagwan, V. Tanwar Sonika, R. Srivastava, and P.S. Kadyan, J. Mater. Sci: Mater. Electron. 26, 6762 (2015).

    Google Scholar 

  13. F. Dumur, Synth. Met. 195, 241 (2014).

    Article  Google Scholar 

  14. S. Tokito, K. Noda, H. Tanaka, Y. Taga, and T. Tsutsui, Synth. Met. 111–112, 393 (2000).

    Article  Google Scholar 

  15. K. Singh, A. Kumar, R. Srivastava, P.S. Kadyan, M.N. Kamalasanan, and I. Singh, Opt. Mater. 34, 221 (2011).

    Article  Google Scholar 

  16. P.K. Sharma, M. Kumar, and A.C. Pandey, J. Nanopart. Res. 13, 1629 (2011).

    Article  Google Scholar 

  17. J. Beltran-Huarac, J. Wang, H. Tanaka, W.M. Jadwisienczak, B.R. Weiner, and G. Morell, J. Appl. Phys. 114, 053106 (2013).

    Article  Google Scholar 

  18. A. Sharma, D. Singh, J.K. Makrandi, M.N. Kamalasanan, R. Shrivastva, and I. Singh, Mater. Chem. Phy. 108, 179 (2008).

    Article  Google Scholar 

  19. D. Singh, K. Singh, S. Bhagwan, R.K. Saini, P.S. Kadyan, and I. Singh, J. Lumin. 169, 9 (2016).

    Article  Google Scholar 

  20. Y.-W. Shi, M.-M. Shi, J.-C. Huang, H.-Z. Chen, M. Wang, X.-D. Liu, Y.-G. Ma, H. Xu, and B. Yang, Chem. Commun. 18, 1941 (2006).

    Article  Google Scholar 

  21. M.M. Duvenhage, H.G. Visser, O.M. Ntwaeaborwa, and H.C. Swart, Phys. B 439, 46 (2014).

    Article  Google Scholar 

  22. R. Pohl and P. Anzenbacher Jr, Org. Lett. 5, 2769 (2003).

    Article  Google Scholar 

  23. J. Yu, Z. Chen, Y. Sakuratani, H. Suzuki, M. Tokita, and S. Miyata, Jpn. J. Appl. Phys. 38, 6762 (1999).

    Article  Google Scholar 

  24. T.A. Hopkins, K. Meerholz, S. Shaheen, M.L. Anderson, A. Schmidt, B. Kippelen, A.B. Padias, H.K. Hall Jr, N. Peyghambarian, and N.R. Armstrong, Chem. Mater. 8, 344 (1996).

    Article  Google Scholar 

  25. A. Kumar, A.K. Palai, R. Srivastava, P.S. Kadyan, M.N. Kamalasanan, and I. Singh, J. Organomet. Chem. 756, 38 (2014).

    Article  Google Scholar 

  26. V. Nishal, A. Kumar, P.S. Kadyan, D. Singh, R. Srivastava, I. Singh, and M.N. Kamalasanan, J. Electron. Mater. 42, 973 (2013).

    Article  Google Scholar 

  27. C. Pérez-Bolívar, V.A. Montes, and P. Anzenbacher Jr, Inorg. Chem. 45, 9610 (2006).

    Article  Google Scholar 

  28. M.F. Gazulla, M. Rodrigo, M. Orduña, and C.M. Gómez, Geostand. Geoanal. Res. 36, 201 (2012).

    Article  Google Scholar 

  29. G.H. Jeffery, J. Bassett, J. Mendham, and R.C. Denney, Vogel’s Textbook of Quantitative Chemical Analysis (New York: Wiley, 1989), p. 309.

    Google Scholar 

  30. H.L. Gao, S.X. Jiang, Y.M. Hu, F.F. Li, Q.Q. Zhang, X.Y. Shi, and J.Z. Cui, Inorg. Chem. Commun. 44, 58 (2014).

    Article  Google Scholar 

  31. T. Yu, W. Su, W. Li, Z. Hong, R. Hua, M. Li, B. Chu, B. Li, Z. Zhang, and Z.Z. Hu, Inorg. Chim. Acta 359, 2246 (2006).

    Article  Google Scholar 

  32. H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, Chem. Soc. Rev. 43, 3259 (2014).

    Article  Google Scholar 

  33. W. Xie, H. Song, J. Fan, F. Jiang, H. Yuan, S. Zhang, Z. Wei, Z. Pang, and S. Han, RSC Adv. 5, 95405 (2015).

    Article  Google Scholar 

  34. F. Seitz, Trans. Faraday Soc. 35, 79 (1939).

    Article  Google Scholar 

  35. L. Malikova, W. Krystek, F.H. Pollak, H. Fred, N. Dai, A. Cavus, and M.C. Tamargo, Phys. Rev. B 54, 1819 (1996).

    Article  Google Scholar 

  36. S. Guha, J.D. Rice, Y.T. Yau, C.M. Martin, M. Chandrasekhar, H.R. Chandrasekhar, R. Guentner, P. Scanduicci de Freitas, and U. Scherf, Phys. Rev. B 67, 125204 (2003).

    Article  Google Scholar 

  37. S.H. Lim, T.G. Bjorklund, and C.J. Bardeen, Chem. Phys. Lett. 342, 555 (2001).

    Article  Google Scholar 

  38. L.S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G.T. Schmett, J. Marshall, D. Fogarty, P.E. Burrows, and S.R. Forrest, J. Am. Chem. Soc. 123, 6300 (2001).

    Article  Google Scholar 

  39. H. Xu, Z.-F. Xu, Z.-Y. Yue, P.-F. Yan, B. Wang, L.-W. Jia, G.-M. Li, W.-B. Sun, and J.-W. Zhang, J. Phys. Chem. C 112, 15517 (2008).

    Article  Google Scholar 

  40. Y.-P. Tong, S.-L. Zheng, and X.-M. Chen, Eur. J. Inorg. Chem. 2005, 3734 (2005).

    Article  Google Scholar 

  41. M. Ghedini, M. La Deda, I. Aiello, and A. Grisolia, Synth. Met. 138, 189 (2003).

    Article  Google Scholar 

Download references

Acknowledgement

One of the authors (SB) gratefully acknowledges financial support of University Research Scholarship (URS) allocated by Maharshi Dayanand University, Rohtak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devender Singh.

Electronic supplementary material

Below is the link to the Electronic supplementary material.

Supplementary material 1 (DOCX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Bhagwan, S., Saini, R.K. et al. Optoelectronic Properties of Color-Tunable Mixed Ligand-Based Light-Emitting Zinc Complexes. J. Electron. Mater. 45, 4865–4874 (2016). https://doi.org/10.1007/s11664-016-4721-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4721-0

Keywords

Navigation