Skip to main content
Log in

One-Pot Hydrothermal Synthesis of LiMn2O4 Cathode Material with Excellent High-Rate and Cycling Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The spinel LiMn2O4 was prepared by a one-step hydrothermal method using acetone as the reductant under different hydrothermal temperatures. X-ray diffraction and scanning electron microscopy analysis indicated that optimal LiMn2O4 particles (LMO-120) were synthesized at the temperature of 120°C and the particles were well distributed and about 410 nm in size. Electrochemical performance showed that the as-prepared LiMn2O4 particles exhibited a higher initial discharge capacity than commercial LiMn2O4 (131.5 mAh g−1 versus 115.6 mAh g−1 at 0.2 C). An excellent discharge capacity retention rate of 94.07% was observed after 60 charge–discharge cycles. On the other hand, when cycled at the high rate of 1 C, the optimal LiMn2O4 in this work showed a high discharge capacity of 107.5 mAh g−1 in contrast to only 92.3 mAh g−1 of the commercial LiMn2O4. These results indicate that LMO-120 showed excellent electrochemical performance, especially the prolonged cycling life and high-rate performance, which suggested that this spinel LiMn2O4 has promise for practical application as a high-rate cathode material for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Armand and J.M. Tarascon, Nature 451, 652 (2008).

    Article  Google Scholar 

  2. E. Hosono, T. Kudo, I. Honma, H. Matsuda, and H. Zhou, Nano Lett. 9, 1045 (2009).

    Article  Google Scholar 

  3. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, and G.B. Future, Chem. Rev. 111, 3577 (2011).

    Article  Google Scholar 

  4. Q. Jiang, L. Xu, Z. Ma, and H. Zhang, Appl. Phys. A 119, 1 (2015).

    Google Scholar 

  5. D. Im and A. Manthiram, J. Electrochem. Soc. 150, A742 (2002).

    Article  Google Scholar 

  6. M. Hirayama, H. Ido, K.S. Kim, W. Cho, K. Tamura, J.I. Mizuki, and R. Kanno, J. Am. Chem. Soc 132, 15268 (2010).

    Article  Google Scholar 

  7. H.P. Sang, K.S. Park, M.H. Cho, K.S. Yang, K.S. Nahm, S.L. Yun, and M. Yoshio, Korean J. Chem. Eng. 19, 791 (2002).

    Article  Google Scholar 

  8. R.K. Katiyar, R. Singhal, K. Asmar, R. Valentin, and R.S. Katiyar, J. Power Sources 194, 526 (2009).

    Article  Google Scholar 

  9. J.Y. Luo, Y.G. Wang, H.M. Xiong, and Y.Y. Xia, Cheminform 19, 4791 (2007).

    Google Scholar 

  10. A.S. Skapin, M. Gaberscek, R. Dominko, M. Bele, J. Fenik, and J. Jamnik, Solid State Ionics 167, 229 (2004).

    Article  Google Scholar 

  11. J.Y. Luo and X.Y.Y. Xia, J. Phys. Chem. C 112, 12051 (2008).

    Article  Google Scholar 

  12. H.W. Lee, P. Muralidharan, R. Ruffo, C.M. Mari, Y. Cui, and D.K. Kim, Nano Lett. 10, 3852 (2010).

    Article  Google Scholar 

  13. Y. Chen, K. Xie, Y. Pan, and C. Zheng, Solid State Ionics 181, 1445 (2010).

    Article  Google Scholar 

  14. S.H. Ye, J.K. Bo, C.Z. Li, J.S. Cao, Q.L. Sun, and Y.L. Wang, Electrochim. Acta 55, 2972 (2010).

    Article  Google Scholar 

  15. K. Dai, J. Mao, Z. Li, Y. Zhai, Z. Wang, X. Song, V. Battaglia, and G. Liu, J. Power Sources 248, 22 (2014).

    Article  Google Scholar 

  16. J.M. Tarascon, W.R. McKinnon, F. Coowar, T.N. Bowmer, G. Amatucci, and D. Guyomard, J. Electrochem. Soc. 141, 1421 (1994).

    Article  Google Scholar 

  17. X. Lv, S. Chen, C. Chen, L. Liu, F. Liu, and G. Qiu, Solid State Sci. 31, 16 (2014).

    Article  Google Scholar 

  18. X. Xiao, J. Lu, and Y. Li, Nano Res. 3, 733 (2010).

    Article  Google Scholar 

  19. X. Qiu, X. Sun, W. Shen, and N. Chen, Solid State Ionics 93, 335 (1997).

    Article  Google Scholar 

  20. K.T. Hwang, W.S. Um, H.S. Lee, J.K. Song, and K.W. Chung, J. Power Sources 74, 169 (1998).

    Article  Google Scholar 

  21. B. Garcia, J. Farcy, J.P. Pereira-Ramos, J. Perichon, and N. Baffier, J. Power Sources 54, 373 (1995).

    Article  Google Scholar 

  22. H.M. Wu, J.P. Tu, Y.F. Yuan, X.T. Chen, J.Y. Xiang, X.B. Zhao, and G.S. Cao, J. Power Sources 161, 1260 (2006).

    Article  Google Scholar 

  23. B.J. Liddle, S.M. Collins, and B.M. Bartlett, Energy Environ. Sci. 3, 1339 (2010).

    Article  Google Scholar 

  24. Q. Jiang, L. Xu, Z. Ma, and H. Zhang, Appl. Phys. A 119, 1069 (2015).

    Article  Google Scholar 

  25. C.H. Jiang, S.X. Dou, H.K. Liu, M. Ichihara, and H.S. Zhou, J. Power Sources 172, 410 (2007).

    Article  Google Scholar 

  26. M.M. Thackeray, Prog. Solid State Chem. 25, 1 (1997).

    Article  Google Scholar 

  27. R. Benedek and M.M. Thackeray, Electrochem. Solid State Lett. 9, A265 (2006).

    Article  Google Scholar 

  28. D. Arumugam and G.P. Kalaignan, Electrochim. Acta 55, 8709 (2010).

    Article  Google Scholar 

  29. B.-S. Liu, Z.-B. Wang, Y. Zhang, F.-D. Yu, Y. Xue, K. Ke, and F.-F. Li, J. Alloys Compd. 622, 902 (2015).

    Article  Google Scholar 

  30. M. Zhao, X. Song, F. Wang, W. Dai, and X. Lu, Electrochim. Acta 56, 5673 (2011).

    Article  Google Scholar 

  31. W. Tang, X.J. Wang, Y.Y. Hou, L.L. Li, H. Sun, Y.S. Zhu, Y. Bai, Y.P. Wu, K. Zhu, and T.V. Ree, J. Power Sources 198, 308 (2012).

    Article  Google Scholar 

  32. Q. Qu, L. Fu, X. Zhan, D. Samuelis, J. Maier, L. Li, S. Tian, Z. Li, and Y. Wu, Energy Environ. Sci. 10, 3985 (2011).

    Article  Google Scholar 

  33. Y. Huang, J. Li, and D. Jia, J. Nanopart. Res. 6, 533 (2004).

    Article  Google Scholar 

  34. Y.L. Ding, J. Xie, G.S. Cao, T.J. Zhu, H.M. Yu, and X.B. Zhao, Adv. Funct. Mater. 21, 348 (2011).

    Article  Google Scholar 

  35. D. Tang, Y. Sun, Z. Yang, L. Ben, L. Gu, and X. Huang, Chem. Mater. 26, 3535 (2014).

    Article  Google Scholar 

  36. C. Wan, Y. Nuli, J. Zhuang, and Z. Jiang, Mater. Lett. 56, 357 (2002).

    Article  Google Scholar 

  37. P. Shen, D. Jia, Y. Huang, L. Liu, and Z. Guo, J. Power Sources 158, 608 (2006).

    Article  Google Scholar 

  38. W. Yang, G. Zhang, J. Xie, L. Yang, and Q. Liu, J. Power Sources 81–82, 412 (1999).

    Article  Google Scholar 

  39. J.H. Yi, J.H. Kim, H.Y. Koo, N.K. You, Y.C. Kang, and J.H. Lee, J. Power Sources 196, 2858 (2011).

    Article  Google Scholar 

  40. H.-Y.L. Serk-Won Jang, K.-C. Shin, S.M. Lee, J.-K. Lee, S.-J. Lee, H.-K. Baik, and D.-S. Rhee, J. Power Sources 226, 274 (2000).

    Article  Google Scholar 

  41. Z. Li, L. Wang, K. Li, and D. Xue, J. Alloys Compd. 580, 592 (2013).

    Article  Google Scholar 

  42. X. Zhang, H. Zheng, V. Battaglia, and R.L. Axelbaum, J. Power Sources 196, 3640 (2011).

    Article  Google Scholar 

  43. Y.P. Wu, R. Holze, and E. Rahm, Electrochim. Acta 47, 3491 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, Nos. 61435010, 61222505 and 20973124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Wang, X. & Zhang, H. One-Pot Hydrothermal Synthesis of LiMn2O4 Cathode Material with Excellent High-Rate and Cycling Properties. J. Electron. Mater. 45, 4350–4356 (2016). https://doi.org/10.1007/s11664-016-4625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4625-z

Keywords

Navigation