Skip to main content

Advertisement

Log in

Computational Analysis of a Thermoelectric Generator for Waste-Heat Harvesting in Wearable Systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Over recent decades, a constantly growing interest in the field of portable electronic devices has been observed. Recent developments in the scientific areas of integrated circuits and sensing technologies have enabled realization and design of lightweight low-power wearable sensing systems that can be of great use, especially for continuous health monitoring and performance recording applications. However, to facilitate wide penetration of such systems into the market, the issue of ensuring their seamless and reliable power supply still remains a major concern. In this work, the performance of a thermoelectric generator, able to exploit the temperature difference established between the human body and the environment, has been examined computationally using ANSYS 14.0 finite-element modeling (FEM) software, as a means for providing the necessary power to various portable electronic systems. The performance variation imposed due to different thermoelement geometries has been estimated to identify the most appropriate solution for the considered application. Furthermore, different ambient temperature and heat exchange conditions between the cold side of the generator and the environment have been investigated. The computational analysis indicated that power output in the order of 1.8 mW can be obtained by a 100-cm2 system, if specific design criteria can be fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sazonov and M.R. Neuman, Wearable Sensors: Fundamentals, Implementation and Applications (Cambridge: Academic Press, 2014).

    Google Scholar 

  2. J.Y. Choi and T.S. Oh, J. Electron. Mater. 43, 4464 (2014).

    Article  Google Scholar 

  3. C. Duc, P. Salvia, A. Lubansu, V. Feipel, and K. Aminian, Med. Eng. Phys. 36, 49 (2014).

    Article  Google Scholar 

  4. R. Shishoo, Textiles for Sportswear (Sawston: Woodhead Publishing, 2015).

    Google Scholar 

  5. Y. Sun and W.J. Jasper, Build. Environ. 93, 50 (2015).

    Article  Google Scholar 

  6. http://vancive.averydennison.com/en/home/technologies/ metria.html. Accessed 20 Jan 2016.

  7. http://www.nuubo.com/index.php?q=en/node/153. Accessed 22 Feb 2016.

  8. http://www.preventice.com/products/bodyguardian/index. html. Accessed 22 Feb 2016.

  9. B.J. Kim, D.H. Kim, Y.Y. Lee, H.W. Shin, G.S. Han, J.S. Hong, K. Mahmood, T.K. Ahn, Y.C. Joo, K.S. Hong, N.G. Park, S. Lee, and H.S. Jung, Energy Environ. Sci. 8, 916 (2015).

    Article  Google Scholar 

  10. J.W. Lee, J.O. Choi, J.E. Jeong, S. Yang, S.H. Ahn, K.W. Kwon, and C.S. Lee, Electrochim. Acta 103, 252 (2013).

    Article  Google Scholar 

  11. S. Rossi, M. Pessione, V. Radicioni, G. Baglione, M. Vatteroni, P. Dario, and L.G. Torre, Procedia Eng. 87, 1274 (2014).

    Article  Google Scholar 

  12. V. Leonov and R. Vullers, J. Renew. Sustain. Energy 1, 1 (2009).

    Article  Google Scholar 

  13. M. Meddad, A. Eddiai, A. Cherif, A. Hajjaji, and Y. Boughaleb, Superlattices Microstruct. 71, 105 (2014).

    Article  Google Scholar 

  14. W.S. Jung, M.J. Lee, M.G. Kang, H.G. Moon, S.J. Yoon, S.H. Baek, and C.Y. Kang, Nano Energy 13, 174 (2015).

    Article  Google Scholar 

  15. G. Mboungoui, K. Adendorff, R. Naidoo, A.A. Jimoh, and D.E. Okojie, Renew. Sustain. Energy Rev. 49, 1136 (2015).

    Article  Google Scholar 

  16. K.Y. Lee, M.K. Gupta, and S.W. Kim, Nano Energy 14, 139 (2015).

    Article  Google Scholar 

  17. S.Y. Kuang, J. Chen, X.B. Cheng, G. Zhu, and Z.L. Wang, Nano Energy 17, 10 (2015).

    Article  Google Scholar 

  18. T. Torfs, V. Leonov, and R. Vullers, Sens. Transducers 80, 1230 (2007).

    Google Scholar 

  19. Z. Wang, V. Leonov, P. Fiorini, and C.V. Hoof, Sens. Actuators A 156, 95 (2009).

    Article  Google Scholar 

  20. M. Lossec, B. Multon, H.B. Ahmed, and C. Gouptil, Eur. Phys. J. Appl. Phys. 52, 1 (2010).

    Article  Google Scholar 

  21. M. Lossec, B. Multon, and H.B. Ahmed, Energy Convers. Manag. 68, 260 (2013).

    Article  Google Scholar 

  22. L. Mateu, C. Codrea, N. Lucas, M. Pollak, and P. Spies, Human Body Energy Harvesting Thermogenerator for Sensing Applications, International Conference on Sensor Technologies and Applications, (2007), p. 366.

  23. V. Leonov and R. Vullers, J. Electron. Mater. 38, 1491 (2009).

    Article  Google Scholar 

  24. K.T. Settaluri, H. Lo, and R.J. Ram, J. Electron. Mater. 41, 984 (2012).

    Article  Google Scholar 

  25. www.poweredbythermolife.com. Accessed 22 Feb 2016.

  26. www.perpetuapower.com. Accessed 22 Feb 2016.

  27. www.thermogentech.com. Accessed 22 Feb 2016.

  28. H. Chiriac, F. Barariu, and V. Nagacevschi, J. Magn. Magn. Mater. 160, 239 (1996).

    Article  Google Scholar 

  29. D. Rowe, Thermoelectrics, Renew. Energy 16, 1251 (1999).

    Article  Google Scholar 

  30. D. Rowe and G. Min, J. Power Sources 73, 193 (1998).

    Article  Google Scholar 

  31. T.J. Hendricks, N.K. Karri, T.P. Hogan, and C.J. Cauchy, J. Electron. Mater. 42, 1725 (2013).

    Article  Google Scholar 

  32. E. Antonova and D. Looman, Finite elements for thermoelectric device analysis in ANSYS, 24th International Conference on Thermoelectrics, (2005), p. 215.

  33. V. Leonov, Heat generator in humans and its interaction with wearable thermoelectric energy scavenger, Proceedings Power MEMS, (2010), p. 231.

  34. E. Carlson, K. Strunz, and B. Otis, 20 mV input boost converter for thermoelectric energy harvesting, Symposium on VLSI Circuits, (2009), p. 162.

  35. C.B. Vining, Nat. Mater. 8, 83 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Kossyvakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kossyvakis, D.N., Vassiliadis, S.G., Vossou, C.G. et al. Computational Analysis of a Thermoelectric Generator for Waste-Heat Harvesting in Wearable Systems. J. Electron. Mater. 45, 2957–2966 (2016). https://doi.org/10.1007/s11664-016-4452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4452-2

Keywords

Navigation