Abstract
Power semiconductor devices based on silicon (Si) are quickly approaching their limits, set by fundamental material properties. In order to address these limitations, new materials for use in devices must be investigated. Wide bandgap materials, such as silicon carbide (SiC) and gallium nitride (GaN) have suitable properties for power electronic applications; however, fabrication of practical devices from these materials may be challenging. SiC technology has matured to point of commercialized devices, whereas GaN requires further research to realize full material potential. This review covers fundamental material properties of GaN as they relate to Si and SiC. This is followed by a discussion of the contemporary issues involved with bulk GaN substrates and their fabrication and a brief overview of how devices are fabricated, both on native GaN substrate material and non-native substrate material. An overview of current device structures, which are being analyzed for use in power switching applications, is then provided; both vertical and lateral device structures are considered. Finally, a brief discussion of prototypes currently employing GaN devices is given.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
N. Mohan, T. Undeland, and W. Robbins. Power Electronics: Converters, Applications, and Design, ed. B. Zobrist (Hoboken: Wiley, 2003), pp. 1–15.
B.J. Baliga, Fundamentals of Power Semiconductor Devices (New York: Springer, 2008), pp. 23–86.
B.J. Baliga, Silicon Carbide Power Devices (Hackensack: World Scientific, 2005), pp. 15–33.
B.J. Baliga, Silicon Carbide Power Devices (Hackensack: World Scientific, 2005), pp. 37–69.
B.J. Baliga, Fundamentals of Power Semiconductor Devices (New York: Springer, 2008), pp. 1–22.
B.J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013).
A. Lidow, J. Strydom, M. de Rooij, and D. Reusch, GaN Transistors for Efficient Power Conversion (West Sussex: Wiley, 2015), pp. 1–18.
S.B. Bayne and B.N. Pushpakaran, J. Electr. Eng. Electron. Technol. (2012). doi:10.4172/2325-9833.1000101.
K. Motoki, SEI Tech. Rev. 70, 28 (2010).
M. Ueno, S. Yoshimoto, K. Ishihara, M. Okada, K. Sumiyoshi, H. Hirano, F. Mitsuhashi, Y. Yoshizumi, T. Ishizuka, and M. Kiyama, IEEE 26th International Symposium onPower Semiconductor Devices and IC’s (ISPSD), 2014, pp.309–312
O. Aktas, X. Xin, T. Prunty, M. Raj, P. Bui-Quang, M. D’Evelyn, and I. Kizilyalli, International Conference on Compound Semiconductor Manufacturing Technology, 2015, pp. 301–304.
O. Aktas and I. Kizilyalli, Electron. Devic. Lett. 36, 890 (2015).
T. Kikkawa, T. Hosoda, S. Akiyama, Y. Kotani, T. Wakabayashi, Ogino, K. Imanishi, A. Mochizuki, K. Itabashi, K. Shono, Y. Asai, K. Joshin, T. Ohki, M. Kanamura, M. Nishimori, T, Imada, J. Kotani, A. Yamada, N. Nakamura, T. Hirose, and K. Watanabe, IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2013, pp.11–14, 27–29
Y. –F. Wu, J. Guerrero, J. McKay, and K. Smith, IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2014, pp.30–32, 13–15
M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, IEEE Trans. Electron. 60, 3053 (2013).
O. Hilt, R. Zhytnytska, J. Bocker, E. Bahat-Treidel, F. Brunner, A. Knauer, S. Dieckerhoff, and J. Wurfl, IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), 2015, pp.237–240, 10–14
O. Hilt, P. Kotara, F. Brunner, A. Knauer, R. Zhytnytska, and J. Wurfl, IEEE Trans. Electron. 60, 3084 (2013).
B.J. Baliga, Fundamentals of Power Semiconductor Devices (New York: Springer, 2008), pp. 279–506.
K. Koyama, H. Aida, S. Kim, K. Ikejiri, T. Doi, and T. Yamazaki, J. Cryst. Growth 403, 38 (2014).
F. Lipski, T. Wunderer, S. Schwaiger, and F. Scholz, Phys. Status Solidi A 207, 1287 (2010).
K. Murakami, D. Matsuo, H. Imabayashi, H. Takazawa, Y. Todoroki, A. Kitamoto, M. Maruyama, M. Imade, M. Yoshimura, and Y. Mori, Jpn. J. Appl. Phys. 52, 8S (2013)
R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, R. Kucharski, M. Zajac, M. Rudzinski, R. Kudrawiec, W. Strupinki, and J. Misiewicz, Phys. Status Solidi 208, 1489 (2011).
A. Hanser and K. Evans, Technology of Gallium Nitride Crystal Growth (New York: Springer, 2010), pp. 3–25.
A. Koukitu and Y. Kumagai, Technology of Gallium Nitride Crystal Growth (New York: Springer, 2010), pp. 31–59.
H. Aida, H. Takeda, N. Aota, and K. Koyama, Jpn. J. Appl. Phys. 51, 016504 (2011).
H. Aida, N. Aota, H. Takeda, and K. Koyama, J. Cryst. Growth 361, 135 (2012).
S. Pearton, C. Abernathy, and F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (London: Springer, 2006), p. 1.
H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
S. Pearton, C. Abernathy, and F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (London: Springer, 2006), p. 313.
T. Heidel, P. Gradzki, and D. Henshall, 73rd Annual Device Research Conference (DRC), pp.27–28, 21–24 (2015).
U. Mishra, P. Parikh, and Y.-F. Wu, Proc. IEEE 90, 1022 (2002).
Y.-F. Wu, D. Kapolnek, J. Ibbetson, P. Parikh, B. Keller, and U. Mishra, IEEE T. Electron. Dev. 48, 586 (2001).
S. Hamady, Micro and nanotechnologies/Microelectronics (Toulouse: Universite Toulouse III Paul Sabatier, 2014).
T. Kikkawa, T. Hosoda, K. Shono, K. Imanishi, Y. Asai, Y.-F. Wu, L. Shen, K. Smith, D. Dunn, S. Chowdhury, P. Smith, J. Gritters, L. McCarthy, R. Barr, R. Lal, U. Mishra, and P. Parikh, IEEE International Reliability Physics Symposium (IRPS), 2015, pp. 6C.1.1–6C.1.6, 19–23
L.-Y. Su, F. Lee, and J. Huang, IEEE T. Electron. Dev. 61, 460 (2014).
J. Du, D. Liu, Z. Bai, Y. Liu, and Q. Yu, Superlattices Microstruct. 85, 690 (2015).
I. Kizilyalli, A. Edwards, O. Aktas, T. Prunty, and D. Bour, IEEE Trans. Electron Dev. 62, 414 (2015).
J. Du, D. Liu, Z. Zhao, Z. Bai, L. Li, J. Mo, and Q. Yu, Superlattices Microstruct. 83, 251 (2015).
D. Ji and S. Chowdhury, IEEE T Electron. Dev. 62, 2571 (2015).
S. Chowdhury, M. Wong, B. Swenson, and U. Mishra, IEEE Electron. Dev. 33, 41 (2012).
I. Ben-Yaacov, Y.-K. Seck, and U. Mishra, J. Appl. Phys. 95, 2073 (2004).
S.-H. Ryu, S. Krishnaswami, B. Hull, J. Richmond, A. Agarwal, and A. Hefner, IEEE International Symposium on Power Semiconductor Devices and IC’s (ISPSD), 2006, pp.1–4
A. Bindra. GaN Power Modules Promise To Raise The Performance Bar. How2Power Today, 2013, pp. 1–4.
GaN Systems Corp. APEI and GaN Systems Demonstrate High Efficiency DC-DC Boost Converter with Ultra-High Speed Gallium Nitride Switch. (Thomas Publishing Company, 2013). Web. http://www.gansystems.com/_uploads/ news/589943_0313%20GaN%20Systems%20APEI.pdf. Accessed 12 Feb 2015.
GaN Systems Inc. High efficiency 2 kW–5 kW boost converter. Application brief (2013)
Transphorm Inc., Transphorm Motor-Drive Development Kits, TDMC4000E0I datasheet (2013)
Y.-F. Wu, Applied Power Electronics Conference (2013)
K. Shirabe, M. Swamy, J.-K. Kang, M. Hisatsune, Y.-F. Wu, D. Kebort, and J. Honea, IEEE T. Ind. Appl. 50, 566 (2014).
Transphorm Inc., GaN Power Low-Loss Switch, TPH3002PS datasheet (2014)
Transphorm Inc., EZ-GaN Evaluation Board, 750 kHz PFC, TDPS300E1A8 datasheet (2014)
A. Wienhausen and D. Kranzer, Mater. Sci. Forum 740–742, 1123 (2013).
Fraunhofer-Institut Für Solare Energiesysteme ISE. Towards Smaller Sizes, Lower Weight and Higher Efficiency with Gallium Nitride Devices. https://www.ise. fraunhofer.de/en/press-and-media/press-releases/press- releases-2012/gallium-nitride-devices. Accessed 12 Feb 2015.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Flack, T.J., Pushpakaran, B.N. & Bayne, S.B. GaN Technology for Power Electronic Applications: A Review. J. Electron. Mater. 45, 2673–2682 (2016). https://doi.org/10.1007/s11664-016-4435-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-016-4435-3