Skip to main content

Advertisement

Log in

Parametric Study of Up-Conversion Efficiency in Er-Doped Lanthanide Hosts Under 780 nm/980 nm Excitation Wavelengths

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Up-conversion is a process of converting low energy light photons to higher energy ones, which can be extensively used in many applications. This paper presents a detailed parametric study of the up-conversion process under different wavelength excitations—780 nm and 980 nm—showing the optical conversion mechanisms that affect the emitted light quantum yield efficiencies. The studied material is erbium-doped β-NaYF4 material, which is one of the most recently studied materials due to its low phonon energy. The studied simulation considers most processes and possible transitions that can take place between Er3+ ions. Einstein coefficients, which are the main parameters that are responsible for the transitions probabilities, are discussed in detail using Judd–Ofelt analysis. In addition, the effect of changing some parametric values is discussed, showing their optimum values that could improve the quantum yield efficiency. This model is very promising, and generic, and can be applied for any host material under any excitation wavelengths by varying the material-dependent parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Etchart, Metal Oxides for Efficient Infrared to Visible Upconversion, Chapter 3, p. 27.

  2. N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi, Nanoscale Res. Lett. 9, 1 (2014).

    Article  Google Scholar 

  3. R. Anderson, S. Smith, P. May, and M. Berry, Phys. Chem. 5, 36 (2014).

    Google Scholar 

  4. S. Tanabe, Sh. Yoshii, K. Hirao, and N. Soga, Phys. Rev. B 45, 4620 (1992).

    Article  Google Scholar 

  5. A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, ACS Appl. Mater. 6, 18329 (2014).

  6. C.F. Gainera, G. Joshuaa, and M. Romanowsk, Proc. SPIE 8231 (2012).

  7. F. van Veggel, C. Dong, N. Johnson, and J. Pichaandi, Nanoscale 4, 7309 (2012).

    Article  Google Scholar 

  8. B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, Nanoscale 7, 1839 (2015).

  9. J.H. Cho, M. Bass, S. Babu, J.M. Dowding, W.T. Self, and S. Seal, J. Lumin. 132, 743 (2012).

    Article  Google Scholar 

  10. N. Cockroft, J. Alloys Compd. 207/208, 33 (1994).

  11. R. Scheps and J. Prog, Quan. Electron. 20, 271 (1996).

    Article  Google Scholar 

  12. D. Jaque, L.M. Maestro, E. Escudero, E.M. Rodriguez, J.A. Capobianco, F. Vetrone, A.J. de la Fuente, F. Sanz-Rodriguez, M.C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J.G. Sole, J. Lumin. 133, 249 (2013).

    Article  Google Scholar 

  13. F. Vetrone, R. Naccache, A. Zamarro, A.J. de la Fuente, F. Sanz-Rodriguez, L.M. Maestro, E.M. Rodriguez, D. Jaque, J.G. Sole, and J.A. Capobianco, ACS Nano 4, 3254 (2010).

    Article  Google Scholar 

  14. S.K.W. MacDougall, A. Ivaturi, J. Marques-Hueso, K.W. Krämer, and B.S. Richards, Opt. Exp. 20, A879 (2012).

  15. A. Ivaturi, S.K.W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K.W. Krämer, A. Meijerink, and B.S. Richards, J. Appl. Phys. 114, 013505 (2013).

    Article  Google Scholar 

  16. S. Fisher, J.C. Goldschmidt, K.W. Kramer, D. Biner, M. Hermle, and S.W. Glunz, 25th European PV Solar Energy Conference and Exhibition, Valencia.

  17. N. Shehata, M. Clavel, K. Meehan, E. Samir, S. Gaballah, and M. Salah, Materials 8, 7663 (2015).

    Article  Google Scholar 

  18. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, Sol. Energ. Mat. Sol. 91, 238 (2007).

  19. N. Shehata, (Unpublished doctoral dissertation, Blacksburg, VA, 2012).

  20. D.N. Patela, A. Lewis, D.M. Wright, D. Lewisa, R. Valentinea, M. Valentinea, D. Wessleya, S. Sarkisovb, and A.M. Darwishc, SPIE 9359 (1–9), 93591L.

  21. Z. Li, W. Park, G. Zorzetto, J.-S. Lemaire, and C.J. Summers, Chem. Mater. 26, 1770 (2014).

    Article  Google Scholar 

  22. J. Chen and J.X. Zhao, Sensors 12, 2414 (2012).

    Article  Google Scholar 

  23. S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J.C. Goldschmidt, J. Appl. Phys. 111, 013109 (2012).

    Article  Google Scholar 

  24. H. Guo, J. Solid State Chem. 180, 127 (2007).

  25. M. Sĭmečkova, D. Jacquemarta, L.S. Rothmana, R.R. Gamacheb, and A. Goldman, J. Quant. Spectrosc. Radiat. Transf. 98, 130 (2006).

  26. J. Yang, M.B.J. Diemeer, L.T.H. Hilderink, R. Dekker, and A. Driessen, IEEE/LEOS Benelux Chapter 2006 Annual Symposium, Eindhoven, p. 253.

  27. D.K. Sardar, C.C. Russell III, and R.M. Yow, J.B. Gruber, B. Zandi, and E.P. Kokanyan, Proc. SPIE, 5332 (2004).

  28. A.A. Kaminskiĭ, Crystalline Lasers: Physical Processes and Operating Schemes, 1st ed., Chap. 3, (Boca Raton, FL, CRC Press, 1996).

  29. D.K. Sardarand and F. Castano, J. Appl. Phys. 91, 911 (2002).

    Article  Google Scholar 

  30. C.B. Layne, W.H. Lowdermilk, and M.J. Weber, Phys. Rev. 16, 10 (1997).

    Article  Google Scholar 

  31. K. K. Pukhov, Phys. Solid State, 50, (2008).

  32. T.T. Basiev, Yu.V. Orlovskii, K.K. Pukhov, and F. Auzel, Laser Phys. 7, 1139 (1997).

    Google Scholar 

  33. Y.Y. Alisky and Society of Photo-optical Instrumentation Engineers, The Physics and Engineering of Solid State Lasers, Chap. 6 (2006).

  34. C.Z. Hadad and S.O. Vaśquez, Phys. Rev. B 60, 8586 (1999).

    Article  Google Scholar 

  35. B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Blasi, and J.C. Goldschmidt, Opt. Exp. 21, A883 (2013).

    Article  Google Scholar 

  36. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, (New York, Wiley, 1991).

  37. Website for NREL’s AM1.5 Standard Dataset; http://rredc.nrel.gov/solar/spectra/. Accessed Sept 10 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Samir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samir, E., Shehata, N., Aldacher, M. et al. Parametric Study of Up-Conversion Efficiency in Er-Doped Lanthanide Hosts Under 780 nm/980 nm Excitation Wavelengths. J. Electron. Mater. 45, 2732–2744 (2016). https://doi.org/10.1007/s11664-015-4331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4331-2

Keywords

Navigation