Skip to main content
Log in

Modulation Transfer Function Consequences of Planar Dense Array Geometries in Infrared Focal Plane Arrays

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Finite-difference time-domain and finite element method simulations are used to evaluate two-dimensional spot-scan profiles of p-on-n double-layer planar heterostructure (DLPH) detector arrays with abrupt p-type diffusions. The modulation transfer function (MTF) is calculated from the spot-scan profiles. An asymmetric dark and photo current collection mechanism is identified and explained as a result of electric field bunching through the corners of polygonal diffusions in DLPH arrays. The MTF consequences of the asymmetric collection are studied for triangular, square, and hexagonal diffusions in square and hexagonal arrays. We show that the placement and shape of the diffusion relative to the pixel can modify the MTF by several percent. The magnitude of the effect is largest for diffusions with fewer degrees of rotational symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Kinch, Proc. SPIE 9070, p. 907032-1 (2014)

    Google Scholar 

  2. X. Brenière, L. Rubaldo, and F. Dupont, Proc. SPIE 9070, 90702W-1 (2014)

    Article  Google Scholar 

  3. Y. Reibel, N. Pere-Laperne, T. Augey, L. Rubaldo, G. Decaens, M.L. Bourqui, S. Bisotto, O. Gravrand, G. Destefanis, G. Druart, and N. Guerineau, Proc. SPIE 9070, 907034-1 (2014)

    Google Scholar 

  4. P. Castelein, N. Baier, O. Gravrand, L. Mollard, D. Brellier, F. Rochette, A. Kerlain, L. Rubaldo, Y. Reibel, and G. Destefanis, Proc. SPIE 9070, 90702Y-1 (2014)

    Article  Google Scholar 

  5. R. Breiter, D. Eich, H. Figgemeier, H. Lutz, J. Wendler, I. Rülich, S. Rutzinger, and T. Schallenberg, Proc. SPIE 9070, 90702V-1 (2014)

    Article  Google Scholar 

  6. M.A. Kinch, Proc. SPIE 4369, 566 (2001)

    Article  Google Scholar 

  7. J.M. Armstrong, M.R. Skokan, M.A. Kinch, and J.D. Luttmer, Proc. SPIE 9070, 907033-1 (2014)

    Google Scholar 

  8. N.K. Dhar and R. Dat, Proc. SPIE 8353, 835302-1 (2012)

    Google Scholar 

  9. J.A. Trezza, N. Masaun, and M. Ettenberg, Proc. SPIE 8012, 80121Y-1 (2011)

    Article  Google Scholar 

  10. C.A. Grimbergen, State Electron. 19, 1033 (1976)

    Article  Google Scholar 

  11. A.R. Wichman, R.E. De Wames, and E. Bellotti, Proc. SPIE 9070, 907003-1 (2014)

    Google Scholar 

  12. J. Coussement, A. Rouvié, E.H. Oubensaid, O. Huet, S. Hamard, J.P. Truffer, M. Pozzi, P. Maillart, Y. Reibel, E. Costard, and D. Billon-Lanfrey, Proc. SPIE 9070, 907005-1 (2014)

    Google Scholar 

  13. R. Bommena, J.D. Bergeson, R. Kodama, J. Zhao, S. Ketharanathan, H. Schaake, H. Shih, S. Velicu, F. Aqariden, P.S. Wijewarnasuriya, and K.K. Dhar, Proc. SPIE 9070, 907009-1 (2014)

    Google Scholar 

  14. O. Gravrand, N. Baier, A. Ferron, F. Rochette, J. Berthoz, L. Rubaldo, and R. Cluzel, Proc. SPIE 9070, 907036-1 (2014)

    Google Scholar 

  15. J. Schuster, B. Pinkie, S. Tobin, C. Keasler, D. D’Orsogna, and E. Bellotti, J. Sel. Top. Quantum Electron. 19, 3800415 (2013)

    Article  Google Scholar 

  16. E. Bellotti and D. D’Orsogna, J. Quantum Electron. 42, 418 (2006)

    Article  Google Scholar 

  17. D. D’Orsogna, S. Tobin, and E. Bellotti, J. Electron. Mater. 37, 1349 (2008)

    Article  Google Scholar 

  18. C.A. Keasler and E. Bellotti, J. Electron. Mater. 40, 1795 (2011)

    Article  Google Scholar 

  19. B. Pinkie and E. Bellotti, J. Electron. Mater. 42, 3080 (2013)

    Article  Google Scholar 

  20. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Norwood: Artech House, 2005)

    Google Scholar 

  21. Sentaurus Device Electromagnetic Wave Solver User Guide (Version G-2012.06) (Mountain View, California: Synopsys Inc., 2012)

  22. J.A. Roden and S.D. Gedney, Microw. Opt. Technol. Lett. 27, 334 (2000)

    Article  Google Scholar 

  23. Sentaurus Device User Guide (Version G-2012.06) (Mountain View, California: Synopsys Inc., 2012)

  24. B. Pinkie, J. Schuster, and E. Bellotti, Opt. Lett. 38, 2546 (2013)

    Article  Google Scholar 

  25. B. Pinkie and E. Bellotti, J. Electron. Mater. 43, 2864 (2014)

    Article  Google Scholar 

  26. J.D. Gaskill, Linear Systems, Fourier Transforms, and Optics (New York: Wiley, 1978)

    Google Scholar 

  27. G.D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (Bellingham: SPIE Press, 2001)

    Book  Google Scholar 

  28. A.S. Grove, O. Leistiko, and W.W. Hooper, IEEE Trans. Electron Dev. 14, 157 (1967)

    Article  Google Scholar 

  29. P.P. Webb and R.J. McIntyre, IEEE Trans. Electron Dev. 31, 1206 (1984)

    Article  Google Scholar 

  30. Y. Liu, S.R. Forrest, J. Hladky, M.J. Lange, G.H. Olsen, and D.E. Ackley, J. Lightwave Technol. 10, 182 (1992)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the U.S. Army Research Laboratory through the Collaborative Research Alliance (CRA) for MultiScale multidisciplinary Modeling of Electronic materials (MSME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Pinkie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinkie, B., Wichman, A.R. & Bellotti, E. Modulation Transfer Function Consequences of Planar Dense Array Geometries in Infrared Focal Plane Arrays. J. Electron. Mater. 44, 2981–2989 (2015). https://doi.org/10.1007/s11664-015-3701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3701-0

Keywords

Navigation