Skip to main content
Log in

Structural and Electrical Properties of Mechanothermally Synthesized NiFe2O4 Nanoceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

NiFe2O4 nanoceramics were prepared by high-energy ball milling followed by a solid-state reaction technique. X-ray powder diffractometry, scanning electron microscopy, and impedance spectroscopy techniques were used to study preliminary structural, microstructural, and detailed electrical characteristics, respectively, of the nickel ferrite nanoceramics. The crystallite size of the fine (nanosize) powder of the compound was found to decrease after 30 h, 60 h, and 90 h of milling. It was also found that, at low temperatures and high frequencies, the relative permittivity and tangent loss of the material were size and milling time dependent. Detailed analysis of impedance spectroscopy data clearly showed the size dependence of the impedance characteristics and dielectric relaxation of the material. The temperature–frequency dependence of the alternating-current (ac) conductivity obeyed Jonscher’s universal power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Maensiri, C. Masingboon, B. Banjong, and S. Seraphin, Scr. Mater. 56, 797 (2007).

    Article  Google Scholar 

  2. B. Viswanathan and V.R.K. Murthy, Ferrite Materials: Science and Technology (New Delhi: Narosa, 1990).

    Google Scholar 

  3. H. Zhao, Z. Zheng, K. Wai, and S. Wang, Electrochem. Commun. 9, 2606 (2007).

    Article  Google Scholar 

  4. P. Sen and A. De, Electrochem. Acta 55, 4677 (2010).

    Article  Google Scholar 

  5. Y. NuLi, P. Zhang, Z. Guo, and H. Liu, Electrochem. Soc. 155, 196 (2008).

    Article  Google Scholar 

  6. H.J. Ahn, H.C. Choi, K.W. Park, S.B. Kim, and Y.E. Sung, J. Phys. Chem. B 108, 9815 (2004).

    Article  Google Scholar 

  7. Y. Mao, T.J. Park, F. Zhang, H. Zhou, and S.S. Wong, Small 3, 1122 (2007).

    Article  Google Scholar 

  8. J.L. Berchmans, R.K. Selvan, and C.O. Augustin, Mater. Lett. 58, 1928 (2004).

    Article  Google Scholar 

  9. H. Srikanth, R. Hajndl, C. Chirinos, J. Sanders, A. Sampath, and T. Sudarshan, Appl. Phys. Lett. 79, 3503 (2001).

    Article  Google Scholar 

  10. R. Kodama, Magn. Nanoparticles 200, 359 (1999).

    Google Scholar 

  11. J. Du, G. Yao, Y. Liu, J. Ma, and G. Zu, Ceram. Int. 38, 1707 (2012).

    Article  Google Scholar 

  12. G.P. Lopez and S.P. Silvetti, Phys. B 354, 144 (2004).

    Article  Google Scholar 

  13. M.R. Phadatare, A.B. Salunkhe, V.M. Khot, C.I. Sathish, D.S. Dhawale, S.H. Pawar, J. Alloys Compd. 546, 314 (2013).

    Article  Google Scholar 

  14. R.C. Kambale, Y.A. Park, N. Hur, K.Y. Rajpure, and S.S. Suryavanshi, J. Korean Phys. Soc. 59, 3385 (2011).

    Article  Google Scholar 

  15. C.G. Koops, Phys. Rev. 83, 121 (1951).

    Article  Google Scholar 

  16. S. Sen and R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004).

    Article  Google Scholar 

  17. S. Brahma, R.N.P. Choudhary, and A.K. Thakur, Phys. B 355, 188 (2005).

    Article  Google Scholar 

  18. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems (Chapter 4) (New York: Wiley, 1987).

    Google Scholar 

  19. J. Suchanicz, Mater. Sci. Eng. B 55, 114 (1998).

    Article  Google Scholar 

  20. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, and P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972).

    Article  Google Scholar 

  21. H. Jain and C.H. Hsieh, J. Non-Cryst. Solids 172, 1408 (1994).

    Article  Google Scholar 

  22. S. Pattanayak, B.N. Parida, P.R. Das, and R.N.P. Choudhary, Appl. Phys. A 112, 387 (2013).

    Article  Google Scholar 

  23. S. Sen, R.N.P. Choudhary, and P. Pramanik, Phys. B 387, 56 (2007).

    Article  Google Scholar 

  24. B. Behera, P. Nayak, and R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007).

    Article  Google Scholar 

  25. I.M. Hodge, M.D. Ingram, and A.R. West, J. Electroanal. Chem. 58, 429 (1975).

    Article  Google Scholar 

  26. A.M. Abdeen, J. Magn. Magn. Mater. 192, 121 (1999).

    Article  Google Scholar 

  27. B. Senthilkumar, R.K. Selvan, P. Vinothbabu, I. Perelshtein, and A. Gedanken, Mater. Chem. Phys. 130, 285 (2011).

    Article  Google Scholar 

  28. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, and R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007).

    Article  Google Scholar 

  29. N. Sivakumar, A. Narayanasamy, N. Ponpandian, J.M. Greneche, K. Shinoda, B. Jeyadevan, and K. Tohji, J. Phys. D 39, 4688 (2006).

    Article  Google Scholar 

  30. C. Behera, R.N.P. Choudhary, and P.R. Das, J. Mater. Sci. 25, 2086 (2014).

    Google Scholar 

  31. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  32. C.K. Suman, K. Prasad, and R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006).

    Article  Google Scholar 

  33. K. Funke, Solid State Chem. 22, 111 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, C., Das, P.R. & Choudhary, R.N.P. Structural and Electrical Properties of Mechanothermally Synthesized NiFe2O4 Nanoceramics. J. Electron. Mater. 43, 3539–3549 (2014). https://doi.org/10.1007/s11664-014-3216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3216-0

Keywords

Navigation