Skip to main content
Log in

A Thermally Conductive Composite with a Silica Gel Matrix and Carbon-Encapsulated Copper Nanoparticles as Filler

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Core–shell-structured nanocapsules with a copper core encapsulated in a carbon shell (Cu-C) were synthesized by a direct-current arc-discharge method. Morphological and microstructural characterization showed that the Cu-C consisted of a nanosized Cu core and carbon shell, with the carbon shells containing 6 to 15 ordered graphitic layers and amorphous carbon that effectively shield the metallic Cu core from oxidation. A thermally conductive composite was successfully fabricated using a silica gel matrix incorporated with Cu-C filler. The Cu-C nanoparticles were homogeneously dispersed in the silica gel. The effects of Cu-C on the thermal conductivity, electrical resistivity, and coefficient of thermal expansion (CTE) of the composite were investigated. For composites with 6.16 vol.%, 11.04 vol.%, 16.70 vol.%, and 23.34 vol.% Cu-C content, the thermal conductivity at 50°C was 0.32 W/(m K) to 0.77 W/(m K), the electrical resistivity was 1.98 × 109, 3.48 × 107, 302, and 1 Ω m, respectively, while the CTE at 200°C was 3.79 × 10−4 K−1 to 3.44 × 10−4 K−1. The results reveal that the ordered graphitic shells in the Cu-C increased both the thermal and electrical conduction, but decreased the CTE by preventing the Cu cores from expanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.K. Park, D. Kim, S. Jeong, J. Moon, and J.S. Kim, Thin Solid Films 515, 7706 (2007).

    Article  Google Scholar 

  2. J. Li and C. Liu, New J. Chem. 33, 1474 (2009).

    Article  Google Scholar 

  3. A.P. Periasamy, J. Liu, H.M. Lin, and H.T. Chang, J. Mater. Chem. A 1, 5973 (2013).

    Article  Google Scholar 

  4. S. Jang, Y. Seo, J. Choi, T. Kim, J. Cho, S. Kim, and D. Kim, Scripta Mater. 62, 258 (2010).

    Article  Google Scholar 

  5. S. Lee, J. Hong, J.H. Koo, H. Lee, S. Lee, T. Choi, H. Jung, B. Koo, J. Park, H. Kim, Y.W. Kim, and T. Lee, ACS Appl. Mater. Interfaces 5, 2432 (2013).

    Article  Google Scholar 

  6. Y. Lu, Z. Zhu, and Z. Liu, Carbon 43, 369 (2005).

    Article  Google Scholar 

  7. C.H. Chen, T. Yamaguchi, K. Sugawara, and K. Koga, J. Phys. Chem. B 109, 20669 (2005).

    Article  Google Scholar 

  8. N.A. Luechinger, E.K. Athanassiou, and W.J. Stark, Nanotechnology 19, 445201 (2008).

    Article  Google Scholar 

  9. J.D. Visurraga, C. Daza, C. Pozo, A. Becerra, C.V. Plessing, and A. García, Int. J. Nanomed. 7, 3597 (2012).

    Article  Google Scholar 

  10. N. Luo, X.J. Li, K.X. Liu, L.M. Ye, and T.W. Chen, J. Nanopart. Res. 15, 1614 (2013).

    Article  Google Scholar 

  11. F. Solá, J. Niu, and Z.H. Xia, J. Phys. D Appl. Phys. 46, 065309 (2013).

    Article  Google Scholar 

  12. X. Li, W. Cai, L. Colombo, and R.S. Ruoff, Nano Lett. 9, 4268 (2009).

    Article  Google Scholar 

  13. S. Wang, Y. He, X. Liu, H. Huang, J. Zou, M. Song, B. Huang, and C.T. Liu, Nanotechnology 22, 405704 (2011).

    Article  Google Scholar 

  14. E.K. Athanassiou, R.N. Grass, and W.J. Stark, Nanotechnology 17, 1668 (2006).

    Article  Google Scholar 

  15. M.R. Gao, W.H. Xu, L.B. Luo, Y.J. Zhan, and S.H. Yu, Adv. Mater. 22, 1977 (2010).

    Article  Google Scholar 

  16. Z. Wang, P. Xiao, and N. He, Carbon 44, 3277 (2006).

    Article  Google Scholar 

  17. S. Yahachi, Carbon 33, 979 (1995).

    Article  Google Scholar 

  18. H. Zhang, Q. Wu, J. Lin, J. Chen, and Z. Xu, J. Appl. Phys. 108, 124304 (2010).

    Article  Google Scholar 

  19. M. Bystrzejewski, S. Cudziło, A. Huczko, and H. Lange, J. Alloys Compd. 423, 74 (2006).

    Article  Google Scholar 

  20. S.N. Masoud, F. Davar, and N. Mir, Polyhedron 27, 3514 (2008).

    Article  Google Scholar 

  21. Q. Ngo, B.A. Cruden, A.M. Cassell, G. Sims, M. Meyyappan, J. Li, and C.Y. Yang, Nano Lett. 4, 2403 (2004).

    Article  Google Scholar 

  22. P.J. Hegedus and A.R. Abramson, Int. J. Heat Mass Transfer 49, 4921 (2006).

    Article  Google Scholar 

  23. Y.Q. Rao and T.N. Blanton, Macromolecules 41, 935 (2008).

    Article  Google Scholar 

  24. Ravi Prasher, Int. J. Heat Mass Transfer 48, 4942 (2005).

    Article  Google Scholar 

  25. J.R. Potts, S. Murali, Y. Zhu, X. Zhao, and R.S. Ruoff, Macromolecules 44, 6488 (2011).

    Article  Google Scholar 

  26. M.A. Raza, A. Westwood, A. Brown, N. Hondow, and Chris Stirling, Carbon 49, 4269 (2011).

    Article  Google Scholar 

  27. K. Bi, Y. Chen, M. Chen, and Y. Wang, Solid State Commun. 150, 1321 (2010).

    Article  Google Scholar 

  28. Y. Xu, C.K. Leong, and D.D.L. Chung, J. Electron. Mater. 36, 1181 (2007).

    Article  Google Scholar 

  29. C. Lin and D.D.L. Chung, Carbon 47, 295 (2009).

    Article  Google Scholar 

  30. M. Terrones, R.B.M. Andrés, C.D. Jessica, L.U. Florentino, I.V.C. Yadira, J.R.M. Fernando, L.E. Ana, M.S. Emilio, G.C.M. Abraham, J.C. Charlier, and H. Terrones, Nano Today 5, 351 (2010).

    Article  Google Scholar 

  31. G. Korb, J. Koráb, and G. Groboth, Compos. A 29A, 1563 (1998).

    Article  Google Scholar 

  32. H. Li, W. Kang, B. Xi, Y. Yan, H. Bi, Y. Zhu, and Y. Qian, Carbon 48, 464 (2010).

    Article  Google Scholar 

  33. C. Lin and D.D.L. Chung, J. Electron. Mater. 37, 1698 (2008).

    Article  Google Scholar 

  34. M. Bystrzejewski, H. Lange, A. Huczko, H.I. Elim, and W. Ji, Chem. Phys. Lett. 444, 113 (2007).

    Article  Google Scholar 

  35. S. Wang, X. Huang, Y. He, H. Huang, Y. Wu, L. Hou, X. Liu, T. Yang, J. Zou, and B. Huang, Carbon 50, 2119 (2012).

    Article  Google Scholar 

  36. C. Hao, F. Xiao, and Z. Cui, J. Nanopart. Res. 10, 47 (2008).

    Article  Google Scholar 

  37. D.S. Jacob, I. Genish, L. Klein, and A. Gedanken, J. Phys. Chem. B 110, 17711 (2006).

    Article  Google Scholar 

  38. A.C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414 (2001).

    Article  Google Scholar 

  39. W.S. Seo, J.H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P.C. Yang, M.V. McConnell, D.G. Nishimura, and H. Dai, Nat. Mater. 5, 971 (2006).

    Article  Google Scholar 

  40. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Canaçdo, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007).

    Article  Google Scholar 

  41. Y. Xu and D.D.L. Chung, Compos. Interface 7, 243 (2000).

    Article  Google Scholar 

  42. L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, and T.J. Goh, Thermochim. Acta 430, 155 (2005).

    Article  Google Scholar 

  43. N. Luo, K.X. Liu, X.J. Li, Z.W. Wu, S.Y. Wu, L.M. Yea, and Y. Shen, Mendeleev Commun. 22, 248 (2012).

    Article  Google Scholar 

  44. A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007).

    Article  Google Scholar 

  45. F. Lin, G.S. Bhatia, and J.D. Ford, J. Appl. Polym. Sci. 49, 1901 (1993).

    Article  Google Scholar 

  46. Y. Agari, M. Shimada, and A. Ueda, Polymer 38, 2649 (1997).

    Article  Google Scholar 

  47. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  Google Scholar 

  48. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, and J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010).

    Article  Google Scholar 

  49. J. Hu, X. Ruan, and Y.P. Chen, Nano Lett. 9, 2730 (2009).

    Article  Google Scholar 

  50. S.Y. Yang, W.N. Lin, Y.L. Huang, H.W. Tien, J.Y. Wang, C.M. Chen, S.M. Li, and S.W. Yu, Carbon 49, 793 (2011).

    Article  Google Scholar 

  51. A.K. Roy, B.L. Farmer, V. Vikas, S. Sihn, J. Lee, and S. Ganguli, ACS Appl. Mater. Interfaces 4, 545 (2012).

    Article  Google Scholar 

  52. C.C. Teng, C.C.M. Ma, C.H. Lu, S.Y. Yang, S.H. Lee, M.C. Hsiao, M.Y. Yen, K.C. Chiou, and T.M. Lee, Carbon 49, 5107 (2011).

    Article  Google Scholar 

  53. T.L. Li and L.C.H. Steve, J. Phys. Chem. B 114, 6825 (2010).

    Article  Google Scholar 

  54. A.M. Marconnet, N. Yamamoto, M.A. Panzer, B.L. Wardle, and K.E. Goodson, ACS Nano 5, 4818 (2011).

    Article  Google Scholar 

  55. R. Haggenmueller, C. Guthy, J.R. Lukes, J.E. Fischer, and K.I. Winey, Macromolecules 40, 2417 (2007).

    Article  Google Scholar 

  56. Y. Cheng, Y. Lin, and C.W. Nan, Carbon 47, 1096 (2009).

    Article  Google Scholar 

  57. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).

    Article  Google Scholar 

  58. G.W. Scherer, Langmuir 12, 1109 (1996).

    Article  Google Scholar 

  59. W. Zhou, C. Wang, T. Ai, K. Wu, F. Zhao, and H. Gu, Compos. A 40, 830 (2009).

    Article  Google Scholar 

  60. J. Wang, H. Xie, Z. Xin, Y. Li, and L. Chen, Sol. Energy 84, 339 (2010).

    Article  Google Scholar 

  61. Y.A. Balogun and R.C. Buchanan, Compos. Sci. Technol. 70, 892 (2010).

    Article  Google Scholar 

  62. D. Toker, D. Azulay, N. Shimoni, I. Balberg, and O. Millo, Phys. Rev. B 68, 0414031 (2003).

    Article  Google Scholar 

  63. J.R. Potts, D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff, Polymer 52, 5 (2011).

    Article  Google Scholar 

  64. F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, and K. Schulte, Polymer 47, 2036 (2006).

    Article  Google Scholar 

  65. A.S. Patole, S.P. Patole, H. Kang, J.B. Yoo, T.H. Kim, and J.H. Ahn, J. Colloid Interface Sci. 350, 530 (2010).

    Article  Google Scholar 

  66. S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and D. Dean, Macromolecules 42, 5251 (2009).

    Article  Google Scholar 

  67. I. Calizo, S. Ghosha, W. Bao, F. Miao, C.N. Lau, and A.A. Balandin, Solid State Commun. 149, 1132 (2009).

    Article  Google Scholar 

  68. J.P. Gwinn and R.L. Webb, Microelectron. J. 34, 215 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Zhang, H., Hong, H. et al. A Thermally Conductive Composite with a Silica Gel Matrix and Carbon-Encapsulated Copper Nanoparticles as Filler. J. Electron. Mater. 43, 2759–2769 (2014). https://doi.org/10.1007/s11664-014-3159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3159-5

Keywords

Navigation