Skip to main content
Log in

Oxide Thermoelectric Materials: A Structure–Property Relationship

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity (ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure–property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron–phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Z :

Figure of merit

T :

Absolute temperature

ZT :

Dimensionless figure of merit

S :

Seebeck coefficient

σ :

Electrical conductivity

κ :

Thermal conductivity

η :

Conversion efficiency

T h :

Hot-side temperature

T c :

Cold-side temperature

T m :

Mean temperature

k B :

Boltzmann constant

n :

Number of charge carriers

e :

Electronic charge

μ c :

Chemical potential

H :

Heat transport per particle

s :

Configurational entropy

E :

Internal energy

V :

Internal volume

g :

Electronic degeneracy

N v :

Number of available sites

ρ :

Ratio of charge carriers to sites

U 0 :

On-site Coulomb interaction

ν ph :

Optical-phonon frequency

N TM :

Number of transition-metal ions per unit volume

R :

Average hopping distance

M v :

Ratio of transition-metal ion concentration

α :

Electron wavefunction decay constant

W :

Activation for conduction

θ D :

Debye temperature

h :

Planck’s constant

W h :

Polaron hopping energy

W d :

Disorder energy

N(E F):

Density of states at the Fermi level

κ el :

Electronic contribution to thermal conductivity

κ lattice :

Lattice component of thermal conductivity

L :

Lorenz factor

C V :

Specific heat per unit volume

ν s :

Velocity of sound

τ :

Phonon relaxation time

l ph :

Phonon mean free path

R O :

Radius of oxygen

R A :

Radius of A cation

R B :

Radius of B cation

t :

Tolerance factor

m * :

Effective mass

References

  1. F.J. DiSalvo, Science 238, 703 (1999).

    Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008).

    Google Scholar 

  3. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Google Scholar 

  4. T.M. Tritt, Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research I & II (San Diego: Academic, 2001).

    Google Scholar 

  5. D.M. Rowe, Thermoelectrics Handbook: Micro to Nano (Boca Raton: CRC Press, Taylor & Francis Group, 2006).

    Google Scholar 

  6. B.I. Ismail and W.H. Ahmed, Recent Pat. Electr. Eng. 2, 27 (2009).

    Google Scholar 

  7. T.J. Seebeck, Abhand Deut. Akad. Wiss. Berlin 265 (1822).

  8. E. Altenkirch, Phys. Z 12, 920 (1911).

    Google Scholar 

  9. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics, Basic Principles and New Materials Developments (Berlin: Springer, 2001).

    Google Scholar 

  10. G.J. Snyder, Electrochem. Soc. Interface 54 (2008).

  11. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited, 1957), p. 132.

    Google Scholar 

  12. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Google Scholar 

  13. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Google Scholar 

  14. A.D. LaLonde, Y. Pei, H. Wang, and G.J. Snyder, Mater. Today 14, 526 (2011).

    Google Scholar 

  15. H. Ohta, K. Sugiura, and K. Koumoto, Inorg. Chem. 47, 8429 (2008).

    Google Scholar 

  16. J. He and Y. Liu, J. Mater. Res. 26, 1762 (2011).

    Google Scholar 

  17. M. Ohtaki, Newsletter Kyushu University G-COE program Novel Carbon Resources Sciences 3, 8 (2010).

  18. K. Koumoto, Y.F. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Annu. Rev. Mater. Res. 40, 363 (2010).

    Google Scholar 

  19. K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).

    Google Scholar 

  20. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Google Scholar 

  21. C. Goupil, Thermodyn. Thermoelectr. Thermodyn., ed. M. Tadashi (2011). ISBN:978-953-307-544-0, InTech, doi:10.5772/12988. Available from: http://www.intechopen.com/download/get/type/pdfs/id/13251.

  22. C. Goupil, W. Seifert, K. Zabrocki, E. Müller, and G.J. Snyder, Entropy 13, 1481 (2011).

    Google Scholar 

  23. P.M. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1976).

    Google Scholar 

  24. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B Condens. Matter 62, 6869 (2000).

    Google Scholar 

  25. N. Tsuda, K. Nasu, A. Fujimori, and K. Siratori, Electronic Conduction in Oxides, 2nd ed. (Berlin: Springer, 2000).

    Google Scholar 

  26. N.F. Mott and E.A. Davis, Electronic Processes in Noncrystalline Materials (Oxford: Clarendon, 1971).

    Google Scholar 

  27. G.N. Austin and N.F. Mott, Adv. Phys. 18, 41 (1969).

    Google Scholar 

  28. A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).

    Google Scholar 

  29. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968).

    Google Scholar 

  30. J. Schnakenberg, Phys. Status Solidi 28, 623 (1968).

    Google Scholar 

  31. E.S. Toberer, A. Zevalkink, and G.J. Snyder, J. Mater. Chem. 21, 15843 (2011).

    Google Scholar 

  32. M.D. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, and J.-P. Fleurial, Adv. Mater. 19, 1043 (2007).

    Google Scholar 

  33. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Google Scholar 

  34. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).

    Google Scholar 

  35. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7, 85 (1997).

    Google Scholar 

  36. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 8, 409 (1998).

    Google Scholar 

  37. M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).

    Google Scholar 

  38. D.F. Morgan and D.A. Wright, J. Appl. Phys. 17, 337 (1966).

    Google Scholar 

  39. T. Tsubota, T. Ohno, N. Shiraishi, and Y. Miyazaki, J. Alloys Compd. 463, 288 (2008).

    Google Scholar 

  40. S. Yanagiya, N.V. Nong, J. Xu, M. Sonne, and N. Pryds, J. Electron. Mater. 40, 674 (2011).

    Google Scholar 

  41. D. Berardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Commun. 146, 97 (2008).

    Google Scholar 

  42. M. Ohtaki and R. Hayashi, Proceedings of the 25th International Conference on Thermoelectrics (ICT 2006) (Piscataway: IEEE, 2006), pp. 276–279.

  43. M. Ohtaki, R. Hayashi, and K. Araki, Proceedings of the 26th International Conference on Thermoelectrics (ICT 2007) (Piscataway: IEEE, 2008), p. 112.

  44. P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T.B. Tasciuc, S.X. Dou, and G. Ramanath, Nano Lett. 11, 4337 (2011).

    Google Scholar 

  45. H. Ohta, W.-S. Seo, and K. Koumoto, J. Am. Ceram. Soc. 79, 2193 (1996).

    Google Scholar 

  46. R.H. Mitchell, Perovskites—Modern and Ancient (Thunder Bay, ON: Almez, 2002).

    Google Scholar 

  47. R.M. Tiwari, M. Gadhvi, A. Nag, N.Y. Vasanthacharya, and J. Gopalakrishnan, J. Chem. Sci. 122, 529 (2010).

    Google Scholar 

  48. R. Robert, L. Bocher, M. Trottmann, A. Reller, and A. Weidenkaff, J. Solid State Chem. 179, 3893 (2006).

    Google Scholar 

  49. R. Robert, L. Bocher, B. Sipos, M. Döbeli, and A. Weidenkaff, Prog. Solid State Chem. 35, 447 (2007).

    Google Scholar 

  50. R. Robert, M.H. Aguirre, P. Hug, A. Reller, and A. Weidenkaff, Acta Mater. 55, 4965 (2007).

    Google Scholar 

  51. A.J. Zhou, T.J. Zhu, and X.B. Zhao, J. Mater. Sci. 43, 1520 (2008).

    Google Scholar 

  52. T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, Phys. Rev. B 63, 113104 (2001).

    Google Scholar 

  53. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 0341061 (2005).

    Google Scholar 

  54. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Nat. Mater. 6, 129 (2007).

    Google Scholar 

  55. H. Ohta, Y. Mune, K. Koumoto, T. Mizoguchi, and Y. Ikuhara, Thin Solid Films 516, 5916 (2008).

    Google Scholar 

  56. H. Ohta, Phys. Status Solidi B 245, 2363 (2008).

    Google Scholar 

  57. R. Moos, A. Gnudi, and K.H. Hardtl, J. Appl. Phys. 78, 5042 (1995).

    Google Scholar 

  58. H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 350, 292 (2003).

    Google Scholar 

  59. H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 392, 306 (2005).

    Google Scholar 

  60. S. Ohta, T. Nomura, H. Ohta, H. Hosono, and K. Koumoto, Appl. Phys. Lett. 87, 092108 (2005).

    Google Scholar 

  61. H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Zhao, H. Peng, J.L. Zhang, M.L. Zhao, J.C. Li, N. Yin, and L.M. Mei, J. Alloys Compd. 486, 693 (2009).

    Google Scholar 

  62. H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Zhao, H. Peng, J.L. Zhang, M.L. Zhao, J.C. Li, N. Yin, and L.M. Mei, Mater. Res. Bull. 45, 809 (2010).

    Google Scholar 

  63. H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Sun, H. Peng, and L.M. Mei, J. Am. Ceram. Soc. 94, 838 (2011).

    Google Scholar 

  64. D.B. Marsh and P.E. Parris, Phys. Rev. B 54, 16602 (1996).

    Google Scholar 

  65. B.T. Cong, T. Tsuji, P.X. Thao, P.Q. Thanh, and Y. Yamamura, Phys. B 352, 18 (2004).

    Google Scholar 

  66. D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, and K. Koumoto, J. Appl. Phys. 100, 084911 (2006).

    Google Scholar 

  67. Y. Wang, Y. Sui, and W. Su, J. Appl. Phys. 104, 093703 (2008).

    Google Scholar 

  68. A. Kosuga, Y. Isse, Y. Wang, K. Koumoto, and R. Funahashi, J. Appl. Phys. 105, 931717 (2009).

    Google Scholar 

  69. J. Lan, Y. Lin, A. Mei, C. Nan, Y. Liu, and B. Zhang, J. Mater. Sci. Technol. 25, 535 (2009).

    Google Scholar 

  70. Y. Wang, Y. Sui, H. Fan, X. Wang, Y. Su, W. Su, and X. Liu, Chem. Mater. 21, 4653 (2009).

    Google Scholar 

  71. J. Lan, Y.H. Lin, H. Fang, A. Mei, C.W. Nan, Y. Liu, S. Xu, and M. Petersz, J. Am. Ceram. Soc. 93, 2121 (2010).

    Google Scholar 

  72. Y. Wang, Y. Sui, X. Wang, and W. Su, Appl. Phys. Lett. 97, 052109 (2010).

    Google Scholar 

  73. H. Taguchi, T. Kugi, M. Kato, and K. Hirota, J. Am. Ceram. Soc. 93, 3009 (2010).

    Google Scholar 

  74. C.J. Liu, A. Bhaskar, and J.J. Yuan, Appl. Phys. Lett. 96, 214101 (2011).

    Google Scholar 

  75. S.M. Choi, C.H. Lim, and W.S. Seo, J. Electron. Mater. 40, 551 (2011).

    Google Scholar 

  76. F. Kawashima, X.Y. Huang, K. Hayashi, Y. Miyazaki, and T. Kajitani, J. Electron. Mater. 38, 1159 (2009).

    Google Scholar 

  77. G. Xu, R. Funahashi, Q. Pu, B. Liu, R. Tao, and G. Wang, Solid State Ion. 172, 147 (2004).

    Google Scholar 

  78. L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, and A. Weidenkaff, Inorg. Chem. 47, 8077 (2008).

    Google Scholar 

  79. J.W. Park, D.H. Kwak, S.H. Yoon, and S.C. Choi, J. Alloys Compd. 487, 550 (2009).

    Google Scholar 

  80. X.Y. Huang, Y. Miyazaki, and T. Kajitani, Solid State Commun. 145, 132 (2008).

    Google Scholar 

  81. A. Maignan, C. Martin, C. Autret, M. Hervieu, B. Raveaua, and J. Hejtmanek, J. Mater. Chem. 12, 1806 (2002).

    Google Scholar 

  82. T. Okuda and Y. Fujii, J. Appl. Phys. 108, 103702 (2010).

    Google Scholar 

  83. S. Urata, R. Funahashi, T. Mihara, A. Kosuga, S. Sodeoka, and T. Tanaka, Int. J. Appl. Ceram. Technol. 4, 535 (2007).

    Google Scholar 

  84. A. Nag, F. D’Sa, and V. Shubha, Mater. Chem. Phys. (to be communicated).

  85. A. Nag, F. D’Sa, and V. Shubha, Mater. Lett. (to be communicated).

  86. A. Nag, J. Manjanna, R.M. Tiwari, and J. Gopalakrishnan, Chem. Mater. 20, 4420 (2008).

    Google Scholar 

  87. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395, 677 (1998).

    Google Scholar 

  88. N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Adv. Mater. 17, 2225 (2005).

    Google Scholar 

  89. R.J. Booth, R. Fillman, H. Whitaker, A. Nag, R.M. Tiwari, K.V. Ramanujachary, J. Gopalakrishnan, and S.E. Lofland, Mater. Res. Bull. 44, 1559 (2009).

    Google Scholar 

  90. M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127, 8889 (2005).

    Google Scholar 

  91. C. Felser, G.H. Fecher, and B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007).

    Google Scholar 

  92. T. Sugaharaa, N.V. Nongb, and M. Ohtakic, Mater. Chem. Phys. 133, 630 (2012).

    Google Scholar 

  93. T. Sugahara, M. Ohtaki, and T. Souma, J. Ceram. Soc. Jpn. 116, 1278 (2008).

    Google Scholar 

  94. T. Sugahara and M. Ohtaki, Appl. Phys. Lett. 99, 062107 (2011).

    Google Scholar 

  95. R. Takahashi, R. Okazaki, Y. Yasui, I. Terasaki, T. Sudayama, H. Nakao, Y. Yamasaki, J. Okamoto, Y. Murakami, and Y. Kitajima, J. Appl. Phys. Lett. 112, 073714 (2012).

    Google Scholar 

  96. H. Kohri and T. Yagasaki, Adv. Sci. Technol. 77, 285 (2013).

    Google Scholar 

  97. Y. Miyazaki, Solid State Ion. 172, 463 (2004).

    Google Scholar 

  98. H. Muguerra, D. Grebille, E. Guilmeau, and R. Cloots, Inorg. Chem. 47, 2464 (2008).

    Google Scholar 

  99. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000).

    Google Scholar 

  100. Y. Wang, N.S. Rogado, R.J. Cava, and N.P. Ong, Nature 423, 425 (2003).

    Google Scholar 

  101. J.-M. Tarascon, R. Ramesh, P. Barboux, M.S. Hedge, G.W. Hull, L.H. Greene, M. Giroud, Y. LePage, W.R. McKinnon, J.V. Waszcak, and L.F. Schneemeyer, Solid State Commun. 71, 663 (1989).

    Google Scholar 

  102. H. Leligny, D. Grebille, O. Pérez, A.C. Masset, M. Hervieu, and B. Raveau, Acta Cryst. B 56, 173 (2000).

    Google Scholar 

  103. A.C. Masset, C. Michel, A. Maiguan, M. Herivieu, O. Toulemonde, F. Studer, and B. Raveau, Phys. Rev. B 62, 166 (2000).

    Google Scholar 

  104. A. Satake, H. Tanaka, and T. Onkawa, J. Appl. Phys. 93, 931 (2004).

    Google Scholar 

  105. E.S. Toberer, A.F. May, and G.J. Snyder, Chem. Mater. 22, 624 (2010).

    Google Scholar 

  106. J. Molenda, C. Delmas, and P. Hagenmuller, Solid State Ion. 9 & 10, 431 (1983).

  107. T. Tanaka, S. Nakamura, and S. Lida, Jpn. J. Appl. Phys. 33, L581 (1994).

    Google Scholar 

  108. K. Fujita, T. Mochida, and K. Nakamura, Jpn. J. Appl. Phys. 40, 4644 (2001).

    Google Scholar 

  109. M. Ito, T. Nagira, D. Furumoto, S. Katsuyama, and H. Nagai, Scr. Mater. 48, 403 (2003).

    Google Scholar 

  110. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys. 40, 4644 (2001).

    Google Scholar 

  111. R. Funahashi and M. Shikano, Appl. Phys. Lett. 81, 1459 (2002).

    Google Scholar 

  112. S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, and H. Yamada, Chem. Mater. 12, 2424 (2000).

    Google Scholar 

  113. Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Alloys Compd. 477, 817 (2009).

    Google Scholar 

  114. N.V. Nong, N. Pryds, S. Linderoth, and M. Ohtaki, Adv. Mater. 23, 2484 (2011).

    Google Scholar 

  115. N.V. Nong, S. Yanagiya, S. Monica, N. Pryds, and M. Ohtaki, J. Electron. Mater. 40, 716 (2011).

    Google Scholar 

  116. L.D. Zhao, D. Berardan, Y.L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, Appl. Phys. Lett. 97, 092118 (2010).

    Google Scholar 

  117. Y. Liu, L.D. Zhao, Y.C. Liu, J.L. Lan, W. Xu, F. Li, B.P. Zhang, D. Berardan, N. Dragoe, Y.H. Lin, C.W. Nan, J.F. Li, and H.M. Zhu, J. Am. Chem. Soc. 133, 20112 (2011).

    Google Scholar 

  118. D. Berardan, L.D. Zhao, C. Barreteau, and N. Dragoe, Phys. Status Solidi A 209, 2273 (2012).

    Google Scholar 

  119. F. Li, J.F. Li, L.D. Zhao, K. Xiang, Y. Liu, B.P. Zhang, Y.H. Lin, C.W. Nan, and H.M. Zhu, Energy Environ. Sci. 5, 7188 (2012).

    Google Scholar 

  120. J. Li, J.H. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L.D. Zhao, Energy Environ. Sci. 5, 8543 (2012).

    Google Scholar 

  121. H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano, and H. Hosono, Chem. Mater. 20, 326 (2008).

    Google Scholar 

  122. K. Ueda, H. Hiramatsu, H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, Phys. Rev. B Condens. Matter Mater. Phys. 69, 155305 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abanti Nag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nag, A., Shubha, V. Oxide Thermoelectric Materials: A Structure–Property Relationship. J. Electron. Mater. 43, 962–977 (2014). https://doi.org/10.1007/s11664-014-3024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3024-6

Keywords

Navigation