Skip to main content
Log in

Error Modeling of Seebeck Coefficient Measurements Using Finite-Element Analysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using finite-element analysis, we have developed a metrology simulation to model errors in the measurement of the Seebeck coefficient. This physical parameter is the constant of proportionality relating the electric potential generated across a conductor to the applied thermal gradient. Its measurement requires careful attention to the electrical and thermal contact interfaces. Furthermore, it is essential that the electric potential and temperature difference be acquired at the same time and at the same location. We have performed Seebeck coefficient measurement simulations to quantitatively explore the effect of temporal perturbation to the voltage and temperature correspondence, by comparing simultaneous and staggered data acquisition techniques under the quasi-steady-state condition. Using a similar method, we have developed an error model to explore the effect of misalignment between the voltage and temperature probes on the measurement of the Seebeck coefficient. This approach enables the exploration of experimentally inaccessible data spaces under ideal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Ltd., 1957).

    Google Scholar 

  2. H.J. Goldsmid, Electronic Refrigeration (London: Pion Limited, 1986).

    Google Scholar 

  3. C. Wood, Rep. Prog. Phys. 51, 459 (1988).

    Article  CAS  Google Scholar 

  4. G.D. Mahan, Solid State Physics, vol. 51, ed. Henry Ehrenreich and Frans Spaepen (Academic Press, San Diego, 1998), p. 81.

  5. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (New York: Springer, 2001).

    Google Scholar 

  6. D.M. Rowe, ed., Thermoelectrics Handbook (Boca Raton, FL: CRC, 1995).

    Google Scholar 

  7. M.G. Kanatzidis, S.D. Mahanti, and T.P. Hogan, ed., Chemistry, Physics, and Materials Science of Thermoelectric Materials: Beyond Bismuth Telluride (New York, NY: Plenum, 2003).

    Google Scholar 

  8. J. Martin, T. Tritt, and C. Uher, J. Appl. Phys. 108, 121101 (2010).

    Article  Google Scholar 

  9. C. Uher, Nav. Res. Rev., TE Mater. XLVIII, 44 (1996)

  10. T.M. Tritt, Materials Research Society Symposium Proceedings, TE Materials, New Directions and Approaches, vol. 478, ed. T.M. Tritt, M. Kanazidis, G. Mahan, and H.B. Lyons, Jr. (Materials Research Society, Pittsburgh, 1997), p. 25.

  11. T.M. Tritt, and V. Browning, Recent Trends in TE Materials Research I, Semiconductors and Semimetals, vol. 69, ed. T.M Tritt (Academic, San Diego, 2001), pp. 25–50.

  12. A.T. Burkov, Thermoelectrics Handbook: Macro to Nano (Boca Raton, FL: CRC, 2005), pp. 1–22.

    Google Scholar 

  13. T.M. Tritt, Thermoelectrics Handbook: Macro to Nano (Boca Raton, FL: CRC, 2005), pp. 1–23.

    Google Scholar 

  14. J. Martin, J. Res. NIST 117, 168 (2012).

    Article  Google Scholar 

  15. E.E. Antonova and D.C. Looman, Proceedings of the International Conference on Thermoelectrics 2005 (2005), p. 200.

  16. M. Jaegle, Proceedings of the European Conference on Thermoelectrics 2007, Odessa, (2007), p. 222.

  17. D. Ebling, M. Jaegle, M. Bartel, A. Jacquot, and H. Böttner, J. Electron. Mater. 38, 1456 (2009).

    Article  CAS  Google Scholar 

  18. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Oxford: Butterworth-Heinemann, 1984).

    Google Scholar 

  19. F. Schaffler, Properties of Advanced Semiconductor Materials, ed. M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur (New York, NY: Wiley, 2001), p. 151.

    Google Scholar 

  20. A.J. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen, and D. Vashaee, Phys. Rev. B 80, 155327 (2009).

    Article  Google Scholar 

  21. G.R. Caskey, D.J. Sellmyer, and L.G. Rubin, Rev. Sci. Instrum. 40, 1280 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, J. Error Modeling of Seebeck Coefficient Measurements Using Finite-Element Analysis. J. Electron. Mater. 42, 1358–1364 (2013). https://doi.org/10.1007/s11664-012-2212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2212-5

Keywords

Navigation