Skip to main content
Log in

Undercooling Behavior and Intermetallic Compound Coalescence in Microscale Sn-3.0Ag-0.5Cu Solder Balls and Sn-3.0Ag-0.5Cu/Cu Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The microstructure of microscale solder interconnects and soldering defects have long been known to have a significant influence on the reliability of electronic packaging, and both are directly related to the solidification behavior of the undercooled solder. In this study, the undercooling behavior and solidification microstructural evolution of Sn-3.0Ag-0.5Cu solder balls with different diameters (0.76 mm, 0.50 mm, and 0.30 mm) and the joints formed by soldering these balls on Cu open pads of two diameters (0.48 mm and 0.32 mm) on a printed circuit board (PCB) substrate were characterized by differential scanning calorimetry (DSC) incorporated into the reflow process. Results show that the decrease in diameter of the solder balls leads to an obvious increase in the undercooling of the balls, while the undercooling of the solder joints shows a dependence on both the diameter of the solder balls and the diameter ratio of solder ball to Cu pad (i.e., D s/D p), and the diameter of the solder balls has a stronger influence on the undercooling of the joints than the dimension of the Cu pad. Coarse primary intermetallic compound (IMC) solidification phases were formed in the smaller solder balls and joints. The bulk Ag3Sn IMC is the primary solidification phase in the as-reflowed solder balls. Due to the interfacial reaction and dissolution of Cu atoms into the solder matrix, the primary Ag3Sn phase can be suppressed and the bulk Cu6Sn5 IMC is the only primary solidification phase in the as-reflowed solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Kim, S.H. Huh, and K. Suganuma, J. Alloys Compd. 352, 226 (2003).

    Article  CAS  Google Scholar 

  2. P. Zimprich, U. Saeed, A. Betzwar-Kotas, B. Weiss, and H. Ipser, J. Electron. Mater. 37, 102 (2008).

    Article  CAS  Google Scholar 

  3. L.M. Yin, X.P. Zhang, and C. Lu, J. Electron. Mater. 38, 2179 (2009).

    Article  CAS  Google Scholar 

  4. Y.H. Tian, C.J. Hang, C.Q. Wang, S.H. Yang, and P.R. Lin, Mater. Sci. Eng. A 529, 468 (2011).

    Article  CAS  Google Scholar 

  5. W.B. Guan, Y.L. Gao, Q.J. Zhai, and K.D. Xu, J. Mater. Sci. 39, 4633 (2004).

    Article  CAS  Google Scholar 

  6. R. Kinyanjui, L.P. Lehman, L. Zavalij, and E. Cotts, J. Mater. Res. 20, 2914 (2005).

    Article  CAS  Google Scholar 

  7. Q.J. Zhai, Y.L. Gao, W.B. Guan, and K.D. Xu, Mater. Sci. Eng. A 441, 278 (2006).

    Article  Google Scholar 

  8. Y.C. Huang, S.W. Chen, and K.S. Wu, J. Electron. Mater. 39, 109 (2010).

    Article  CAS  Google Scholar 

  9. S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S. Cho, J. Yu, and W. Choi, JOM 56, 34 (2004).

    Article  CAS  Google Scholar 

  10. L.W. Lin, J.M. Song, Y.S. Lai, Y.T. Chiu, N.C. Lee, and J.Y. Uan, Microelectron. Reliab. 49, 235 (2009).

    Article  CAS  Google Scholar 

  11. M.G. Cho, H.Y. Kim, S.K. Seo, and H.M. Lee, Appl. Phys. Lett. 95, 021905 (2009).

    Article  Google Scholar 

  12. S.K. Kang, M.G. Cho, P. Lauro, and D.Y. Shih, J. Mater. Res. 22, 557 (2007).

    Article  CAS  Google Scholar 

  13. M.G. Cho, S.K. Kang, and H.M. Lee, J. Mater. Res. 23, 1147 (2008).

    Article  CAS  Google Scholar 

  14. M.G. Cho, S.K. Kang, S.K. Seo, D.Y. Shih, and H.M. Lee, J. Mater. Res. 24, 534 (2009).

    Article  CAS  Google Scholar 

  15. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).

    Article  Google Scholar 

  16. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng. R 44, 1 (2004).

    Article  Google Scholar 

  17. K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  18. K.N. Tu, A.M. Gusak, and M. Li, J. Appl. Phys. 93, 1335 (2003).

    Article  CAS  Google Scholar 

  19. Y.C. Chan and D. Yang, Prog. Mater Sci. 55, 428 (2010).

    Article  CAS  Google Scholar 

  20. S.W. Chen, C.C. Lin, and C. Chen, Metall. Mater. Trans. A 29, 1965 (1998).

    Article  Google Scholar 

  21. D. Turnbull, J. Chem. Phys. 20, 411 (1952).

    Article  CAS  Google Scholar 

  22. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (London: Chapman and Hall, 1992), p. 190.

    Google Scholar 

  23. D.M. Herlach and F. Gillessen, J. Phys. F 17, 1635 (1987).

    Article  CAS  Google Scholar 

  24. W. Kurz and D.J. Fisher, Fundamentals of Solidification (Switzerland: Trans Tech publications, 1984), p. 21.

    Google Scholar 

  25. S. Gruner, I. Kaban, R. Kleinhempel, W. Hoyer, P. Jóvári, and R.G. Delaplane, J. Non-Cryst. Solids 351, 3490 (2005).

    Article  CAS  Google Scholar 

  26. Y. Takamatsu, H. Esaka, and K. Shinozuka, Mater. Sci. Forum 654–656, 1397 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. P. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M.B., Ma, X. & Zhang, X.P. Undercooling Behavior and Intermetallic Compound Coalescence in Microscale Sn-3.0Ag-0.5Cu Solder Balls and Sn-3.0Ag-0.5Cu/Cu Joints. J. Electron. Mater. 41, 3169–3178 (2012). https://doi.org/10.1007/s11664-012-2203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2203-6

Keywords

Navigation