Skip to main content
Log in

Controlling n-Type Carrier Density from Er Doping of InGaAs with MBE Growth Temperature

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

An Erratum to this article was published on 21 August 2012

Abstract

Under certain growth conditions in molecular beam epitaxy, erbium, indium, gallium, and arsenic form a two-phase composite, consisting of ErAs nanoparticles embedded in dilute Er-doped In0.53Ga0.47As. This paper further explores the effect of growth conditions, specifically growth temperature, on the nanostructure of this material and the resulting thermal and electrical transport properties. For a set of samples grown with substrate temperatures varying from 430°C to 525°C, we find that the thermal conductivity decreases slightly with increasing growth temperature (from 4.8 W/m K to 4.1 W/m K) while the electrical conductivity decreases dramatically with increasing growth temperature (from 2100 S/cm to 110 S/cm), which is largely due to decreasing carrier concentration. At higher growth temperatures, more erbium precipitates out of solution and the size and density of the ErAs nanoparticles increase, as characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), while the total erbium concentration does not change with growth temperature, as characterized by Rutherford backscatter spectrometry (RBS). Measurement of the erbium concentration by secondary-ion mass spectrometry suggests that the Er bonding configuration changes with growth temperature. These results indicate that increasing the ratio of solute Er atoms in the In0.53Ga0.47As host to precipitated Er atoms in ErAs particles increases the carrier density and electrical conductivity of the total composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kim, S.L. Singer, A. Majumdar, J.M.O. Zide, D. Klenov, A.C. Gossard, and S. Stemmer, Nano Lett. 8, 2097 (2008).

    Article  CAS  Google Scholar 

  2. W. Kim, S.L. Singer, A. Majumdar, D. Vashaee, Z. Bian, A. Shakouri, G. Zeng, J.E. Bowers, J.M.O. Zide, and A.C. Gossard, Appl. Phys. Lett. 88, 242107 (2006).

    Article  Google Scholar 

  3. P.G. Burke, H. Lu, N.G. Rudawski, S. Stemmer, A.C. Gossard, J.-H. Bahk, and J.E. Bowers, J. Vac. Sci. Technol. B 29, 03C117 (2011).

    Article  Google Scholar 

  4. D.C. Driscoll, M.P. Hanson, C. Kadow, and A.C. Gossard, Appl. Phys. Lett. 78, 1703 (2001).

    Article  CAS  Google Scholar 

  5. F.J. DiSalvo, Science 285, 703–706 (1999).

    Article  CAS  Google Scholar 

  6. J.M.O. Zide, J.-H. Bahk, R. Singh, M. Zebarjadi, G. Zeng, H. Lu, J.P. Feser, D. Xu, S.L. Singer, Z.X. Bian, A. Majumdar, J.E. Bowers, A. Shakouri, and A.C. Gossard, J. Appl. Phys. 108, 123702 (2010).

    Article  Google Scholar 

  7. G. Zeng, J.-H. Bahk, J.E. Bowers, H. Lu, J.M.O. Zide, A.C. Gossard, R. Singh, Z. Bian, A. Shakouri, S.L. Singer, W. Kim, and A. Majumdar, J. Electron. Mater. 37, 1786–1792 (2008).

    Article  CAS  Google Scholar 

  8. R. Singh, Z. Bian, G. Zeng, J.M.O. Zide, J. Christofferson, H.F. Chou, A.C. Gossard, J.E. Bowers, and A. Shakouri, Materials Research Society Symposium Proceedings, Vol. 886 (2006), pp. 0886-F04-04.1

  9. J.M.O. Zide, D.O. Klenov, S. Stemmer, A.C. Gossard, G. Zeng, J.E. Bowers, D. Vashaee, and A. Shakouri, Appl. Phys. Lett. 87, 112102 (2005).

    Article  Google Scholar 

  10. J.M.O. Zide, G. Zeng, J.-H. Bahk, W. Kim, S.L. Singer, D. Vashaee, Z.X. Bian, R. Singh, J.E. Bowers, A. Majumdar, A. Shakouri, and A.C. Gossard, XXV International Conference on Thermoelectrics (IEEE, 2006), pp. 280–282.

  11. G. Zeng, J.M.O. Zide, W. Kim, J.E. Bowers, A.C. Gossard, Z.X. Bian, Y. Zhang, A. Shakouri, S.L. Singer, and A. Majumdar, J. Appl. Phys. 101, 034502 (2007).

    Article  Google Scholar 

  12. J.M.O. Zide, D. Vashaee, Z. Bian, G. Zeng, J.E. Bowers, A. Shakouri, and A.C. Gossard, Phys. Rev. B 74, 205335 (2006).

    Article  Google Scholar 

  13. G. Zeng, J.E. Bowers, J.M.O. Zide, A.C. Gossard, W. Kim, S. Singer, A. Majumdar, R. Singh, Z. Bian, Y. Zhang, and A. Shakouri, Appl. Phys. Lett. 88, 113502 (2006).

    Article  Google Scholar 

  14. H. Lu, P.G. Burke, A.C. Gossard, G. Zeng, A.T. Ramu, J.-H. Bahk, and J.E. Bowers, Adv. Mater. 23, 2377 (2011).

    Article  CAS  Google Scholar 

  15. D. Xu, J.P. Feser, Y. Zhao, H. Lu, P.G. Burke, A.C. Gossard, and A. Majumdar, ASME Conference Proceedings 2010 (2010), p. 525.

  16. C. Kadow, J.A. Johnson, K. Kolstad, and A.C. Gossard, J. Vac. Sci. Technol. B 21, 29 (2003).

    Article  CAS  Google Scholar 

  17. Y. Fujiwara, N. Matsubara, J. Tsuchiya, T. Ito, and Y. Takeda, Jpn. J. Appl. Phys. 36, 2587–2591 (1997).

    Article  CAS  Google Scholar 

  18. N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).

    Article  CAS  Google Scholar 

  19. M. Zebarjadi, K. Esfarjani, Z. Bian, and A. Shakouri, Nano Lett. 11, 225–230 (2011).

    Article  CAS  Google Scholar 

  20. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, Mi. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

  21. A.Y. Cho, Thin Solid Films 100, 291–317 (1983).

    Article  CAS  Google Scholar 

  22. V.H. Weiss, Z. Naturforsch. B 11a, 131 (1956).

    Google Scholar 

  23. Y.K. Koh, S.L. Singer, W. Kim, J.M.O. Zide, H. Lu, D.G. Cahill, A. Majumdar, and A.C. Gossard, J. Appl. Phys. 105, 054303 (2009).

    Google Scholar 

  24. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot, J. Appl. Phys. 93, 793 (2003).

    Article  CAS  Google Scholar 

  25. D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).

    Article  CAS  Google Scholar 

  26. C.A. Paddock and G.L. Eesley, J. Appl. Phys. 60, 285 (1986).

    Article  CAS  Google Scholar 

  27. R.M. Costescu, D.G. Cahill, F.H. Fabreguette, Z.A. Sechrist, and S.M. George, Science 303, 989–990 (2004).

    Article  CAS  Google Scholar 

  28. D. Young, C. Thomsen, and H. Grahn, Phonon Scattering in Condensed Matter V, ed. A.C. Anderson and J.P. Wolfe (Berlin: Springer, 1986), pp. 49–51.

  29. A. Benninghoven, F.G. Rudenauer, and H.W. Erner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends (New York: Wiley, 1987), p. 1227.

    Google Scholar 

  30. R.G. Wilson, F.A. Stevie, and C.W. Magee, Secondary Ion Mass Spectrometry (New York: Wiley, 1989).

    Google Scholar 

  31. F.A. Stevie and R.G. Wilson, J. Vac. Sci. Technol. A 9, 3064 (1991).

    Article  CAS  Google Scholar 

  32. D.-Q. Yang and C.-Z. Fan, Chin. Phys. Lett. 15, 697 (1998).

    Article  CAS  Google Scholar 

  33. M.L. Yu and K. Mann, Phys. Rev. Lett. 57, 1476–1479 (1986).

    Article  CAS  Google Scholar 

  34. W.-K. Chu, J.W. Mayer, and M.-A. Nicolet, Backscattering Spectrometry (New York, NY: Academic, 1978).

    Google Scholar 

  35. T.D. Sands, C.J. Palmstrøm, J.B. Harbison, V.G. Keramidas, N. Tabatabaie, T.L. Cheeks, R. Ramesh, and Y. Silberberg, Mater. Sci. Rep. 5, 99–170 (1990).

    Article  CAS  Google Scholar 

  36. L.R. Doolittle, Nucl. Instrum. Methods B9, 344–351 (1985).

    CAS  Google Scholar 

  37. J.W. Butler, Nucl. Instrum. Methods B15, 232–237 (1986).

    CAS  Google Scholar 

  38. D.O. Klenov, J.M.O. Zide, J.D. Zimmerman, A.C. Gossard, and S. Stemmer, Appl. Phys. Lett. 86, 241901 (2005).

    Article  Google Scholar 

  39. S.J. Pennycook and D.E. Jesson, Ultramicroscopy 37, 14–38 (1991).

    Article  Google Scholar 

  40. P. Nellist and S.J. Pennycook, Ultramicroscopy 78, 111–124 (1999).

    Article  CAS  Google Scholar 

  41. R.F. Loane, P. Xu, and J. Silcox, Ultramicroscopy 40, 121–138 (1992).

    Article  Google Scholar 

  42. K. Shiraishi, Appl. Phys. Lett. 60, 1363–1365 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Burke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, P.G., Buehl, T.E., Gilles, P. et al. Controlling n-Type Carrier Density from Er Doping of InGaAs with MBE Growth Temperature. J. Electron. Mater. 41, 948–953 (2012). https://doi.org/10.1007/s11664-012-2050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2050-5

Keywords

Navigation