Skip to main content
Log in

Short-Wave Infrared HgCdTe Avalanche Photodiodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Short-wave infrared (SWIR) HgCdTe avalanche photodiodes (APDs) have been developed to address low-flux applications at low operating temperature and for laser detection at higher temperatures. Stable multiplication gains in excess of 200 have been observed in homojunction APDs with cutoff wavelengths down to 2.8 μm and operating temperatures up to 300 K, associated with low excess noise F < 1.3 and low 1/f noise. The measured dark current density at 200 K of 6.2 μA/cm2 is low enough to enable high-sensitivity single-element light detection and ranging (lidar) applications and time-of-flight imaging. Corresponding APD arrays have been hybridized on a readout integrated circuit (ROIC) designed for low-flux low-SNR imaging with low noise and frame rates higher than 1500 frames/s. Preliminary focal-plane array characterization has confirmed the nominal ROIC performance and showed pixel operability above 99.5% (pixels within ±50% of average gain). The bias dependence of the multiplication gain has been characterized as a function of temperature, cadmium composition, and junction geometry. A qualitative change in the bias dependence of the gain compared with mid-wave infrared (MWIR) HgCdTe has motivated the development of a modified local electric field model for the electron impaction ionization coefficient and multiplication gain. This model gives a close fit to the gain curves in both SWIR and MWIR APDs at temperatures between 80 K and 300 K, using two parameters that scale as a function of the energy gap and temperature. This property opens the path to quantitative predictive device simulations and to estimations of the junction geometry of APDs from the bias dependence of the gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Beck, C.-F. Wan, M.A. Kinch, and J.E. Robinson, Proc. SPIE 4454, 188 (2001).

    Article  CAS  Google Scholar 

  2. J.D. Beck, C.-F. Wan, M.A. Kinch, J.E. Robinson, P. Mitra, R. Scrithfield, F. Ma, and J. Campbell, J. Electron. Mater. 35, 1166 (2006).

    Article  CAS  Google Scholar 

  3. I. Baker, S. Duncan, and J. Copley, Proc. SPIE 5406, 113 (2004).

    Google Scholar 

  4. G. Perrais, O. Gravrand, J. Baylet, G.L. Destefanis, and J. Rothman, J. Electron. Mater. 36, 963 (2007).

    Article  CAS  Google Scholar 

  5. M.B. Reine, J.W. Marciniec, K.K. Wong, T. Parodos, J.D. Mullarkey, P.A. Lamarre, S.P. Tobin, K.A. Gustavsen, and G.M. Williams, J. Electron. Mater. 36, 1059 (2007).

    Article  CAS  Google Scholar 

  6. J. Asbrock, S. Bailey, D. Baley, J. Boisvert, G. Chapman, G. Crawford, T. De Lyon, B. Drafahl, J. Edwards, E. Herrin, C. Hoyt, M. Jack, R. Kvaas, K. Liu, W. McKeag, R. Rajavel, V. Randall, S. Rengarajan, and J. Riker, Proc. SPIE 6940, 69402O (2008).

    Article  Google Scholar 

  7. J. Beck, M. Woodall, R. Scritchfield, M. Ohlson, L. Wood, P. Mitra, and J. Robinson, J. Electron. Mater. 37, 1334 (2008).

    Article  CAS  Google Scholar 

  8. J. Rothman, E. de Borniol, S. Bisotto, L. Mollard, F. Guellec, F. Pistone, S. Courtas, and X. Lefoule, Proc. Quantum of Quasars 2009, Pos QQ-009 (2010). http://pos.sissa.it/archive/conferences/101/009/QQ09_009.pdf. Accessed 29 Feb 2012.

  9. G. Perrais, J. Rothman, G. Destefanis, and J-P. Chamonal, J. Electron. Mater. 37, 1261 (2008).

    Google Scholar 

  10. G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, J. Electron. Mater. 38, 1790 (2009).

    Article  CAS  Google Scholar 

  11. R.B. Emmons, J. Appl. Phys. 38, 3705 (1967).

    Article  Google Scholar 

  12. A. Ashcroft and I. Baker, Proc. SPIE 7660, 76603C (2010).

    Article  Google Scholar 

  13. J. Rothman, E. De Borniol, O. Gravrand, S. Bisotto, L. Mollard, F. Guellec, F. Pistone, S. Courtas, and X. Lefoule, Proc. SPIE 7834, 78340O (2010).

    Article  Google Scholar 

  14. I. Baker and M. Kinch, Mercury Cadmium Telluride: Growth, Properties and Applications, ed. P. Capper and J. Garland (Wiley, 2011).

  15. J.D. Beck, R. Scritchfield, P. Mitra, W. Sullivan III, A.D. Gleckler, R. Strittmatter, and R.J. Martin, Proc. SPIE 8033, 80330N (2011).

    Article  Google Scholar 

  16. J. Rothman, G. Perrais, P. Ballet, L. Mollard, S. Gout, and J.-P. Chamonal, J. Electron. Mater. 37, 1303 (2008).

    Article  CAS  Google Scholar 

  17. M.B. Reine, J.W. Marciniec, K.K. Wong, T. Parodos, J.D. Mullarkey, P.A. Lamarre, S.P. Tobin, R.W. Minich, K.A. Gustavsen, M. Compton, and G.M. Williams, J. Electron. Mater. 37, 1376 (2008).

    Article  CAS  Google Scholar 

  18. J. Rothman, L. Mollard, S. Gout, L. Bonnefond, and J. Wlassow, J. Electron. Mater. 40, 1757 (2011).

    Article  CAS  Google Scholar 

  19. M.A. Kinch, C.-F. Wan, H. Schaake, and D. Chandra, Appl. Phys. Lett. 94, 193508 (2009).

    Article  Google Scholar 

  20. E. De Borniol, P. Castelein, F. Guellec, J. Rothman, G. Vojetta, G. Destéfanis, and M. Vuillermet, Proc. SPIE 8012, 801232 (2011).

    Article  Google Scholar 

  21. W. Shockley, Solid State Electron. 2, 35 (1961).

    Article  Google Scholar 

  22. M.A. Kinch, J.D. Beck, C.-F. Wan, F. Ma, and J. Campbell, J. Electron. Mater. 33, 630 (2004).

    Article  CAS  Google Scholar 

  23. Y. Okuto and C.R. Crowell, Phys. Rev. B 6, 3076 (1972).

    Article  CAS  Google Scholar 

  24. Y. Okuto and C.R. Crowell, Solid State Electron. 18, 161 (1975).

    Article  CAS  Google Scholar 

  25. F. Bertazzi, M. Moresco, M. Penna, M. Goano, and E. Bellotti, J. Electron. Mater. 39, 912 (2010).

    Article  CAS  Google Scholar 

  26. J. Rothman, G. Vojetta, B. Moselle, L. Mollard, S. Gout, and J.-P. Chamonal, J. Electron. Mater. 39, 837 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Rothman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothman, J., Mollard, L., Bosson, S. et al. Short-Wave Infrared HgCdTe Avalanche Photodiodes. J. Electron. Mater. 41, 2928–2936 (2012). https://doi.org/10.1007/s11664-012-1970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1970-4

Keywords

Navigation