Skip to main content
Log in

Solid–Solid Reaction Between Sn-3Ag-0.5Cu Alloy and Au/Pd(P)/Ni(P) Metallization Pad with Various Pd(P) Thicknesses

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of Pd(P) thickness on the solid–solid reaction between Sn-3Ag-0.5Cu and Au/Pd(P)/Ni(P) at 180°C was investigated in this study. The reaction was conducted after reflow, thereby removing the Au/Pd finish before the solid-state reaction. The reaction products included (Cu,Ni)6Sn5, Ni2SnP, and Ni3P, and their growth strongly depended on the Pd(P) thickness, especially for the former phases [i.e., (Cu,Ni)6Sn5 and Ni2SnP]. As the Pd(P) thickness increased from 0 μm, to 0.1 μm, to 0.22 μm, the (Cu,Ni)6Sn5 exhibited a needle-like dense layer, chunk-like morphology, and discontinuous morphology, respectively. The alternative phase (Ni2SnP) behaved in a manner opposite to that of (Cu,Ni)6Sn5, growing with a discontinuous morphology to a dense layer with increasing Pd(P) thickness. However, this strong dependence disappeared when the solder joints were subsequently subjected to solid-state aging. The (Cu,Ni)6Sn5 and Ni2SnP both became layered structures for all cases examined. A high-speed ball shear (HSBS) test was conducted to quantify the mechanical response of the interfacial microstructures. The HSBS test results showed that any initial difference in shear strength caused by the various Pd(P) thicknesses could be reduced after the solid-state aging, which is consistent with the microstructural evolution observed. The mechanical strength of the solder joints was decreased due to the presence of a bi-intermetallic structure of (Cu,Ni)6Sn5/Ni2SnP at the interface. Detailed analysis of the growth of (Cu,Ni)6Sn5 and Ni2SnP is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Kao, M. Oezkoek, and H. Roberts, Proceedings of the 5th International Microsystems Packaging Assembly and Circuits Technology (IMPACT) Conference and International 3D IC Conference, article number: 5699489, 20–22 Oct 2010, Taipei, Taiwan.

  2. W. Sun, W.H. Zhu, E.S.W. Poh, H.B. Tan, and R.T. Gan, Proceeding of International Conference on Electronic Packaging Technology & High Density Packaging, ICEPT-HDP (2008), p. 1.

  3. Y.W. Yen, P.H. Tsai, Y.K. Fang, S.C. Lo, Y.P. Hsieh, and C. Lee, J. Alloys Compd. 503, 25 (2010).

    Article  CAS  Google Scholar 

  4. J.W. Yoon, B.I. Noh, J.H. Yoon, H.B. Kang, and S.B. Jung, J. Alloys Compd. 509, 153 (2011).

    Article  Google Scholar 

  5. P. Ratchev, S. Stoukatch, and B. Swinnen, Microelectron. Reliab. 46, 1315 (2006).

    Article  CAS  Google Scholar 

  6. P. Snugovsky, P. Arrowsmith, and M. Romansky, J. Electron. Mater. 30, 1262 (2001).

    Article  CAS  Google Scholar 

  7. R.J. Coyle, D.E.H. Popps, A. Mawer, D.P. Cullen, G.M. Wenger, and P.P. Solan, IEEE Trans. Compon. Packag. Technol. 26, 724 (2003).

    Article  CAS  Google Scholar 

  8. K. Zeng, R. Stierman, D. Abbott, and M. Murtuza, JOM 58, 75 (2006).

    Article  CAS  Google Scholar 

  9. K. Suganuma and K.S. Kim, JOM 60, 61 (2008).

    Article  CAS  Google Scholar 

  10. B.K. Kim, S.J. Lee, J.Y. Kim, K.Y. Ji, Y.J. Yoon, M.Y. Kim, S.H. Park, and J.S. Yoo, J. Electron. Mater. 37, 527 (2008).

    Article  CAS  Google Scholar 

  11. H. Roberts and K. Johal, Lead-Free Soldering (New York: Springer, 2007), pp. 221–269.

    Book  Google Scholar 

  12. W.H. Wu, C.S. Lin, S.H. Huang, and C.E. Ho, J. Electron. Mater. 39, 2387 (2010).

    Article  CAS  Google Scholar 

  13. P.G. Kim, K.N. Tu, and D.C. Abbott, J. Appl. Phys. 84, 770 (1998).

    Article  CAS  Google Scholar 

  14. G. Ghosh, J. Electron. Mater. 28, 1238 (1999).

    Article  CAS  Google Scholar 

  15. S.P. Peng, W.H. Wu, C.E. Ho, and Y.M. Huang, J. Alloys Compd. 493, 431 (2010).

    Article  CAS  Google Scholar 

  16. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  17. C.E. Ho (Ph.D. Thesis, National Central University, Taiwan, June 2002).

  18. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R49, 1 (2005).

    CAS  Google Scholar 

  19. W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, and C.R. Kao, Mater. Sci. Eng. A 396, 384 (2005).

    Google Scholar 

  20. BGA Ball Shear, JESD22-B117, JEDEC Solid State Technology Association (2006).

  21. W.G. Bader, Weld. J. Res. Suppl. 48, 551 (1969).

    Google Scholar 

  22. C.E. Ho, Y.M. Chen, and C.R. Kao, J. Electron. Mater. 28, 1231 (1999).

    Article  CAS  Google Scholar 

  23. P.T. Vianco, J.A. Rejent, G.L. Zender, and P.F. Hlava, Metall. Mater. Trans. A 41, 3042 (2010).

    Article  CAS  Google Scholar 

  24. S. Furuseth and H. Fjellvag, Acta Chem. Scand. A 39, 537 (1985).

    Article  Google Scholar 

  25. Y.C. Lin and J.G. Duh, Scr. Mater. 54, 1661 (2006).

    Article  CAS  Google Scholar 

  26. Y.C. Lin, K.J. Wang, and J.G. Duh, J. Electron. Mater. 39, 283 (2010).

    Article  CAS  Google Scholar 

  27. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 548 (2002).

    Google Scholar 

  28. C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci.-Mater. Electron. 18, 155 (2007).

    Article  CAS  Google Scholar 

  29. K. Nogita, C.M. Gourlay, and T. Nishimura, JOM 61, 45 (2009).

    Article  CAS  Google Scholar 

  30. C.S. Huang, J.H. Yeh, B.L. Young, and J.G. Duh, J. Electron. Mater. 31, 1230 (2002).

    Article  CAS  Google Scholar 

  31. S.J. Wang and C.Y. Liu, Scr. Mater. 49, 813 (2003).

    Article  CAS  Google Scholar 

  32. S.W. Kim, J.W. Yoon, and S.B. Jung, J. Electron. Mater. 33, 1182 (2004).

    Article  CAS  Google Scholar 

  33. Y.C. Sohn, J. Yu, S.K. Kang, D.Y. Shih, and T.Y. Lee, J. Mater. Res. 19, 2428 (2004).

    Article  CAS  Google Scholar 

  34. J.W. Yoon and S.B. Jung, J. Alloys Compd. 396, 122 (2005).

    Article  CAS  Google Scholar 

  35. S.T. Kao and J.G. Duh, J. Electron. Mater. 34, 1129 (2005).

    Article  CAS  Google Scholar 

  36. V. Vuorinen, T. Laurila, H. Yu, and J.K. Kivilahti, J. Appl. Phys. 99, 023530 (2006).

    Article  Google Scholar 

  37. S.C. Yang, C.C. Chang, M.H. Tsai, and C.R. Kao, J. Alloys Compd. 499, 149 (2010).

    Article  CAS  Google Scholar 

  38. C.S. Liu, C.E. Ho, R. Peng, and C.R. Kao, J. Electron. Mater., in press (doi:10.1007/s11664-011-1666-1).

  39. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  CAS  Google Scholar 

  40. C.E. Ho, S.W. Lin, and Y.C. Lin, J. Alloys Compd. 509, 7749 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, C.E., Wu, W.H., Hsu, L.H. et al. Solid–Solid Reaction Between Sn-3Ag-0.5Cu Alloy and Au/Pd(P)/Ni(P) Metallization Pad with Various Pd(P) Thicknesses. J. Electron. Mater. 41, 11–21 (2012). https://doi.org/10.1007/s11664-011-1722-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1722-x

Keywords

Navigation