Skip to main content
Log in

Additive Occupancy in the Cu6Sn5-Based Intermetallic Compound Between Sn-3.5Ag Solder and Cu Studied Using a First-Principles Approach

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Cu6Sn5-based intermetallic compound containing a certain amount of Co or Ni is commonly formed at the interface between a Cu substrate and Sn-based solder. The Co or Ni additive is often found to occupy the Cu atom sublattice in the Cu6Sn5 crystal structure. In this paper, a first-principles approach based on density-functional theory is employed to explore the most favorable occupancy sites of Ni and Co dopants in the Cu6Sn5 crystal structure. It is found that, for up to 27.3 at.% concentration, both Ni and Co atoms tend to substitute for Cu in the Cu6Sn5-based structure and form more thermodynamically stable (Cu,Ni)6Sn5 and (Cu,Co)6Sn5 phases. In comparison, Ni is more effective than Co at stabilizing the Cu6Sn5 phase. At a lower concentration level (9.1 at.%), the Ni or Co atoms prefer to occupy the 4e Cu sublattice. At a higher concentration (27.3 at.%), the Ni atoms will likely be located on the 4e + 8f2 Cu sublattice. Analysis of density of states (DOS) and partial density of states (PDOS) indicates that hybridization between Ni-d (or Co-d) and Sn-p states plays a dominant role in structural stability. Compared with Cu4Ni2Sn5, where Ni occupies the 8f2 Cu sublattice, Cu4Co2Sn5 is less stable due to the lower amplitude of the Co-d PDOS peak and its position mismatch with the Sn-p PDOS peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gao, H. Nishikawa, and T. Takemoto, J. Electron. Mater. 36, 1630 (2007).

    Article  CAS  ADS  Google Scholar 

  2. C.-H. Lin, S.-W. Chen, and C.-H. Wang, J. Electron. Mater. 31, 907 (2002).

    Article  CAS  ADS  Google Scholar 

  3. S.-W. Chen, S.-H. Wu, and S.-W. Lee, J. Electron. Mater. 32, 1188 (2003).

    Article  ADS  Google Scholar 

  4. G. Ghosh, Acta Mater. 49, 2609 (2001).

    Article  CAS  Google Scholar 

  5. G. Ghosh, J. Electron. Mater. 33, 229 (2004).

    Article  CAS  ADS  Google Scholar 

  6. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  Google Scholar 

  7. W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, and C.R. Kao, Mater. Sci. Eng. A 396, 385 (2005).

    Article  Google Scholar 

  8. L.H. Xu and J.H.L. Pang, Thin Solid Films 504, 362 (2006).

    Article  CAS  ADS  Google Scholar 

  9. S.-W. Chen and C.-H. Wang, J. Mater. Res. 21, 2270 (2006).

    Article  CAS  ADS  Google Scholar 

  10. V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, and J.K. Kivilahti, J. Electron. Mater. 36, 1355 (2007).

    Article  CAS  ADS  Google Scholar 

  11. C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci: Mater. Electron. 18, 155 (2007).

    Article  CAS  Google Scholar 

  12. V. Vuorinen, H. Yu, T. Laurila, and J.K. Kivilahti, J. Electron. Mater. 37, 792 (2008).

    Article  CAS  ADS  Google Scholar 

  13. F. Gao, T. Takemoto, and H. Nishikawa, J. Electron. Mater. 35, 2081 (2006).

    Article  CAS  ADS  Google Scholar 

  14. A. Kowalczyk, M. Falkowski, V.H. Tran, and M. Pugaczowa-Michalska, J. Alloy. Compd. 440, 13 (2007).

    Article  CAS  Google Scholar 

  15. C. Jiang, D.J. Sordelet, and B. Gleeson, Acta Mater. 54, 1147 (2006).

    Article  CAS  Google Scholar 

  16. G. Ghosh and M. Asta, J. Mater. Res. 20, 3102 (2005).

    Article  CAS  ADS  Google Scholar 

  17. N.T.S. Lee, V.B.C. Tan, and K.M. Lim, Appl. Phys. Lett. 88, 031913-1 (2006).

    ADS  Google Scholar 

  18. C. Yu, J.Y. Liu, H. Lu, P.L. Li, and J.M. Chen, Intermetallics 15, 1471 (2007).

    Article  CAS  Google Scholar 

  19. N.T.S. Lee, V.B.C. Tan, and K.M. Lim, Appl. Phys. Lett. 89, 131908-1 (2006).

    ADS  Google Scholar 

  20. J. Chen and Y.-S. Lai, Microelectron. Reliab. 49, 264 (2009).

    Article  CAS  Google Scholar 

  21. A.-K. Larsson, L. Stenberg, and S. Lidin, Acta Crystallogr. B 50, 636 (1994).

    Article  Google Scholar 

  22. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr. 220, 567 (2005).

    Article  CAS  Google Scholar 

  23. Materials Studio Version 4.4 (San Diego, CA: Accelrys, 2008).

  24. A. Gangulee, G.C. Das, and M.B. Bever, Metall. Trans. 4, 2063 (1973).

    Article  CAS  Google Scholar 

  25. J.-H. Shim, C.-S. Oh, B.-J. Lee, and D.N. Lee, Z. Metallkd. 87, 205 (1996).

    CAS  Google Scholar 

  26. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handweker, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  ADS  Google Scholar 

  27. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, Metall. Mater. Trans. 35A, 1641 (2004).

    Article  CAS  Google Scholar 

  28. G. Ghosh, Metall. Mater. Trans. 40A, 4 (2009).

    Article  CAS  Google Scholar 

  29. T. Hong, T.J. Watson-Yang, A.J. Freeman, T. Oguchi, and J.H. Xu, Phys. Rev. B 41, 12462 (1990).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Qu, J. & Takemoto, T. Additive Occupancy in the Cu6Sn5-Based Intermetallic Compound Between Sn-3.5Ag Solder and Cu Studied Using a First-Principles Approach. J. Electron. Mater. 39, 426–432 (2010). https://doi.org/10.1007/s11664-010-1093-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1093-8

Keywords

Navigation