Skip to main content
Log in

Shallow and Deep Centers in As-Grown and Annealed MgZnO/ZnO Structures with Quantum Wells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Shallow and deep centers in ZnO(P)/MgZnO/ZnO/MgZnO/ZnO(Ga) structures grown by pulsed laser deposition on sapphire were studied before and after annealing in oxygen atmosphere at high temperatures of 850°C to 950°C. In both as-grown and annealed structures, microcathodoluminescence spectra in the near-bandgap region demonstrate a blue-shift by 0.13 eV compared with bulk ZnO films, indicating carrier confinement in the MgZnO/ZnO/MgZnO quantum well (QW). Annealing strongly decreases the concentration of shallow uncompensated donors from ~1017 cm−3 to ~1016 cm−3 and makes it possible to probe the region of the QW by capacitance–voltage (CV) profiling. This profiling confirms charge accumulation in the QW. The dominant electron traps in the as-grown films are the well-known traps with activation energies of 0.3 eV and 0.8 eV. After annealing, the electron traps observed in the structure have activation energies of 0.14 eV, 0.33 eV, and 0.57 eV, with the Fermi level in the n-ZnO(P) pinned by the 0.14-eV traps. The annealing also introduces deep compensating defects that decrease the intensity of band-edge luminescence and produce a deep luminescence defect band at 2.2 eV. In addition, a defect vibrational band becomes visible in Raman spectra near 650 cm−1. No conversion to p-type conductivity was detected. The results are compared with the data for the structures successfully converted to p-type, and possible reasons for the observed differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Look, ZnO Bulk, Thin Films and Nanostructures, Chapter 2, ed. C. Jagadish and S.J. Pearton (Oxford, UK: Elsevier, 2006).

  2. D.-K. Hwang, M.-S. Oh, J.-H. Lim, and S.-J. Park, J. Phys. D: Appl. Phys. 40, R387 (2007).

    Article  ADS  CAS  Google Scholar 

  3. H. Long, G. Fang, H. Huang, X. Mo, W. Xia, B. Dong, X. Meng, and X. Zhao, Appl. Phys. Lett. 95, 013509 (2009).

    Article  ADS  CAS  Google Scholar 

  4. D.C. Kim, W.S. Han, H.K. Cho, B.H. Kong, and H.S. Kim, Appl. Phys. Lett. 91, 231901 (2007).

    Article  ADS  CAS  Google Scholar 

  5. Y.W. Heo, S.J. Park, K. Ip, S.J. Pearton, and D.P. Norton, Appl. Phys. Lett. 83, 1128 (2003).

    Article  ADS  CAS  Google Scholar 

  6. D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, and T. Steiner, Mater. Today 7, 34 (2004).

    Article  CAS  Google Scholar 

  7. H. von Wencstern, R. Pickenhain, H. Schmidt, M. Brandt, G. Biehne, M. Corenz, and M. Grundmann, Appl. Phys. Lett. 89, 092122 (2006).

    Article  ADS  CAS  Google Scholar 

  8. O. Lopatiuk, W. Burdett, L. Chernyak, K.P. Ip, Y.W. Heo, D.P. Norton, S.J. Pearton, B. Hertog, P.P. Chow, and A. Osinsky, Appl. Phys. Lett. 86, 012105 (2005).

    Article  ADS  CAS  Google Scholar 

  9. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  10. W. Liu, S.S. Gu, J.D. Ye, S.M. Zhu, S.M. Liu, X. Zhou, R. Zhang, Y. Shi, Y.D. Zheng, Y. Hang, and C.L. Zhang, Appl. Phys. Lett. 88, 092101 (2006).

    Article  ADS  CAS  Google Scholar 

  11. X. Pan, J. Li, Y. Zeng, X. Gu, L. Zhu, B. Zhao, and Y. Che, Appl. Surf. Sci. 253, 6060 (2007).

    Article  ADS  CAS  Google Scholar 

  12. S.S. Lin, J.G. Lu, Z.Z. Ye, H.P. He, X.Q. Gu, L.X. Chen, J.Y. Huang, and B.H. Zhao, Solid State Commun. 148, 25 (2008).

    Article  ADS  CAS  Google Scholar 

  13. H.S. Kim, F. Lugo, S.J. Pearton, D.P. Norton, Y.-L. Wang, and F. Ren, Appl. Phys. Lett. 92, 112108 (2008).

    Article  ADS  CAS  Google Scholar 

  14. Y.-L. Wang, H.S. Kim, D.P. Norton, S.J. Pearton, and F. Ren, Appl. Phys. Lett. 92, 112101 (2008).

    Article  ADS  CAS  Google Scholar 

  15. L.S. Berman and A.A. Lebedev, Capacitance Spectroscopy of Deep Centers in Semiconductors (Leningrad: Nauka, 1981) (in Russian).

    Google Scholar 

  16. G.M. Martin, A. Mitonneau, D. Pons, A. Mircea, and D.W. Woodard, J. Phys. C 13, 3855 (1980).

    Article  ADS  CAS  Google Scholar 

  17. L.S. Berman, Purity Control of Semiconductors by the Method of Capacitance Spectroscopy (St. Petersburg: Electronic Integral Systems, 1995), p. 180.

    Google Scholar 

  18. A.Y. Polyakov, N.B. Smirnov, A. Govorkov, N. Pashkova, A. Schlensky, S.J. Pearton, M.E. Overberg, C.R. Abernathy, J.M. Zavada, and R.G. Wilson, J. Appl. Phys. 93, 5388 (2003).

    Article  ADS  CAS  Google Scholar 

  19. A.Y. Polyakov, N.B. Smirnov, A.I. Belogorokhov, A.V. Govorkov, E.A. Kozhukhova, A.V. Osinsky, J.Q. Xie, B. Hertog, and S.J. Pearton, J. Vac. Sci. Technol. B25, 1794 (2007).

    Google Scholar 

  20. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, M. Shin, M. Skowronski, and D.W. Greve, J. Appl. Phys. 84, 870 (1998).

    Article  ADS  CAS  Google Scholar 

  21. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, M.G. Mil’vidskii, J.M. Redwing, M. Shin, M. Skowronski, D.W. Greve, and R.G. Wilson, Solid State Electron. 42, 627 (1998).

    Article  ADS  CAS  Google Scholar 

  22. F.D. Auret, S.A. Goodman, M. Hayes, M.J. Legodi, H.A. van Laarhove, and D.C. Look, Appl. Phys. Lett. 79, 3074 (2001).

    Article  ADS  CAS  Google Scholar 

  23. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A Kozhukhova, A.I. Belogorokhov, H.S. Kim, D.P. Norton, and S.J. Pearton, J. Appl. Phys. 103, 083704-1 (2008).

    Article  ADS  CAS  Google Scholar 

  24. G. Krokidis, J.P. Xanthakis, and A.A. Iliadis, Solid State Electron. 48, 2099 (2004).

    Article  ADS  CAS  Google Scholar 

  25. J.J. Wu and S.C. Liu, J. Phys. Chem. B 106, 9546 (2002).

    Article  CAS  Google Scholar 

  26. R.P. Wang, G. Xu, and P. Jin, Phys. Rev. B69, 113303 (2004).

    ADS  Google Scholar 

  27. B.H. Bairamov, A. Heinrich, G. Imer, V.V. Toporov, and F. Ziegler, Phys. Status Solidi B 119, 227 (1983).

    Article  ADS  CAS  Google Scholar 

  28. L.W. Yang, X.L. Wu, G.S. Huang, T. Qiu, and Y.M. Yang, J. Appl. Phys. 97, 014308 (2005).

    Article  ADS  CAS  Google Scholar 

  29. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, A.I. Belogorokhov, A.V. Markov, H.S. Kim, D.P. Norton, and S.J. Pearton, J. Electrochem. Soc. 154, H825 (2007).

    Article  CAS  Google Scholar 

  30. A.I. Belogorokhov, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, H.S. Kim, D.P. Norton, and S.J. Pearton, Appl. Phys. Lett. 90, 192110 (2007).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The research at IRM was partially supported by the Russian Federal Agency of Science and Innovation (FASI), Contract No. 02.740.11.0139. The work at UF was supported by the Army Research Office under Grant No. DAAD19-01-1-0603 (monitored by Dr. M. Gerhold) and the Army Research Laboratory and NSF (DMR 0700416, Dr. L. Hess).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Pearton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyakov, A.Y., Smirnov, N.B., Govorkov, A.V. et al. Shallow and Deep Centers in As-Grown and Annealed MgZnO/ZnO Structures with Quantum Wells. J. Electron. Mater. 39, 601–607 (2010). https://doi.org/10.1007/s11664-009-0973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0973-2

Keywords

Navigation