Skip to main content
Log in

Size and Substrate Effects upon Undercooling of Pb-Free Solders

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The degrees of undercooling of various Pb-free solders are determined using differential scanning calorimetry. The effects of size, composition, and substrate upon undercooling are examined. Ni is the most effective element among Cu, Ni, and Ag in reducing the undercooling of Sn solders, both as an alloying addition and as a substrate. The degrees of undercooling and their variations are more significant for smaller-sized solders, but the relative orders of undercooling of various solders remain the same. It is concluded that the primary factors controlling undercooling are the primary solidification phase and the substrate. Different compositions of melts could have different primary solidifications, resulting in different degrees of undercooling. When the primary solidification phase and the substrates are the same, the degrees of undercooling could be different if the compositions of the melts are different. However, this compositional effect is not very significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Klein Wassink, Soldering in Electronics, 2nd ed. (UK: Electrochemical, 1989).

    Google Scholar 

  2. R.K. Ulrich and W.D. Brown, Advanced Electronic Packaging, 2nd ed. (New York: Wiley, 2005).

    Google Scholar 

  3. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).

    Article  CAS  Google Scholar 

  4. K.N. Tu and K. Zeng, Mater. Sci. Eng. R34, 1 (2001).

    CAS  Google Scholar 

  5. S. Lassig, Solid State Technol. 50, 48 (2007).

    CAS  Google Scholar 

  6. C.W. Wang and S.-W. Chen, Acta Mater. 54, 247 (2006).

    Article  CAS  Google Scholar 

  7. C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao, and D.S. Jiang, J. Electron. Mater. 35, 1017 (2006).

    Article  CAS  ADS  Google Scholar 

  8. D. Turnbull, J. Chem. Phys. 18, 198 (1950).

    Article  CAS  ADS  Google Scholar 

  9. B.E. Sundquist and L.F. Mondolfo, Trans. Metall. Soc. AIME 221, 157 (1961).

    CAS  Google Scholar 

  10. W.P. Allen and J.H. Perepezko, Metall. Trans. A 22A, 753 (1991).

    CAS  ADS  Google Scholar 

  11. K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng. A Struct. A333, 106 (2002).

    Article  CAS  Google Scholar 

  12. R. Kinyanjui, L.P. Lehman, L. Zavalij, and E. Cotts, J. Mater. Res. 20, 2914 (2005).

    Article  CAS  ADS  Google Scholar 

  13. S.K. Kang, M.G. Cho, P. Lauro, and D.Y. Shih, J. Mater. Res. 22, 557 (2007).

    Article  CAS  ADS  Google Scholar 

  14. I.E. Anderson, J. Walleser, and J.L. Harringa, JOM 59, 38 (2007).

  15. M.G. Cho, S.K. Kang, and H.M. Lee, J. Mater. Res. 23, 1147 (2008).

    Article  CAS  ADS  Google Scholar 

  16. M.G. Cho, S.K. Kang, S.K. Seo, D.Y. Shih, and H.M. Lee, J. Mater. Res. 24, 534 (2009).

    Article  CAS  ADS  Google Scholar 

  17. S.-W. Chen, C.C. Huang, and J.C. Lin, Chem. Eng. Sci. 50, 417 (1995).

    Article  CAS  Google Scholar 

  18. S.-W. Chen, C.C. Lin, and C.M. Chen, Metall. Mater. Trans. A 29A, 1965 (1998).

    Article  CAS  Google Scholar 

  19. W.J. Boettinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko, DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing (Washington, DC: NIST, 2006).

    Google Scholar 

  20. N. Saunders and A.P. Miodownik, Binary Alloy Phase Diagram, 2nd ed., ed. H. Okamoto, P.R. Subramanian, and L. Kacprzak (Materials Park, OH: ASM International, 1990)

    Google Scholar 

  21. S.-W. Chen and Y.W. Yen, J. Electron. Mater. 28, 1202 (1999).

    ADS  Google Scholar 

  22. S.-W. Chen, S.H. Wu, and S.W. Lee, J. Electron. Mater. 32, 1188 (2003).

    Article  ADS  Google Scholar 

  23. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  Google Scholar 

  24. C.Y. Chou, S.-W. Chen, and Y.S. Chang, J. Mater. Res. 21, 1849 (2006).

    Article  CAS  ADS  Google Scholar 

  25. S.-W. Chen, A.R. Zi, P.Y. Chen, H.J. Wu, Y.K. Chen, and C.H. Wang, Mater. Chem. Phys. 111, 17 (2008).

    Article  CAS  Google Scholar 

  26. J.H. Perepezko, Mater. Sci. Eng. A Struct. A178, 105 (1994).

    Article  Google Scholar 

  27. J.H. Perepezko and M.J. Uttormark, ISIJ Int. 35, 580 (1995).

    Article  CAS  Google Scholar 

  28. K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support of the National Science Council of Taiwan (NSC97-2221-E-007-067-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinn-wen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Yc., Chen, Sw. & Wu, Ks. Size and Substrate Effects upon Undercooling of Pb-Free Solders. J. Electron. Mater. 39, 109–114 (2010). https://doi.org/10.1007/s11664-009-0966-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0966-1

Keywords

Navigation