Skip to main content
Log in

Growth of GaN Nanowires on Epitaxial GaN

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report experiments on the formation of GaN nanowires on epitaxial GaN using thin layers of Ni. GaN covered with Ni shows roughening that is strongly dependent on the thickness of the Ni layer and the annealing conditions. With the initial Ni thickness of 0.8 nm we observe formation of Ni-filled antidots. These act as nucleation sites in the growth of GaN nanowires, allowing for the preparation of nanowires with an average diameter as small as 30 nm. Dense and well-oriented nanowires are formed by pulsed metallorganic chemical vapor deposition at 750°C. The size of the Ni features determines the diameter of the GaN nanowires, resulting in good control over the formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Mamutin, Tech. Phys. Lett. 25, 741 (1999). doi:10.1134/1.1262619

    Article  CAS  Google Scholar 

  2. B.S. Simpkins, P.E. Pehrsson, M.L. Taheri, R.M. Stroud, J. Appl. Phys. 101, 094305 (2007). doi:10.1063/1.2728782

    Article  Google Scholar 

  3. X.F. Duan, C.M. Lieber, J. Am. Chem. Soc. 122, 188 (2000). doi:10.1021/ja993713u

    Article  CAS  Google Scholar 

  4. G.S. Cheng, L.D. Zhang, Y. Zhu, G.T. Fei, L. Li, C.M. Mo, Y.Q. Mao, Appl. Phys. Lett. 75, 2455 (1999). doi:10.1063/1.125046

    Article  CAS  Google Scholar 

  5. M. He, P. Zhou, S. Noor Mohammad, G.L. Harris, J.B. Halpern, R. Jacobs, W.L. Warney, L. Salamanca-Riba, J. Cryst. Growth 231, 357 (2001). doi:10.1016/S0022-0248(01)01466-X

    Article  CAS  Google Scholar 

  6. S. Han, W. Jin, T. Tang, C. Li, D. Zhang, X. Liu, J. Mater. Res. 18, 245 (2003). doi:10.1557/JMR.2003.0033

    Article  CAS  Google Scholar 

  7. Y.T. Kim, S.H. Lee, Y.H. Mo, H.W. Shim, K.S. Nahm, E.-K. Suh, J.W. Yang, K.Y. Lim, G.S. Park, J. Cryst. Growth 257, 97 (2003). doi:10.1016/S0022-0248(03)01422-2

    Article  CAS  Google Scholar 

  8. G. Cheng, A. Kolmakov, Y. Zhang, M. Moskovits, R. Munden, M. Reed, G. Wang, D. Moses, J. Zhang, Appl. Phys. Lett. 83, 1578 (2003). doi:10.1063/1.1604190

    Article  CAS  Google Scholar 

  9. G. Kipshidze, B. Yavich, A. Chandolu, J. Yun, V. Kuryatkov, I. Ahmad, D. Aurongzeb, M. Holtz, H. Temkin, Appl. Phys. Lett. 86, 33104 (2005). doi:10.1063/1.1850188

    Article  Google Scholar 

  10. X. Wang, X.Y. Sun, M. Fairchild, S.D. Hersee, Appl. Phys. Lett. 89, 23315 (2006)

    Google Scholar 

  11. S.D. Hersee, X. Sun, X. Wang, Nano Lett. 6, 1808 (2007). doi:10.1021/nl060553t

    Article  Google Scholar 

  12. T. Henry, K. Kim, Z. Ren, C. Yerino, J. Han, Nano Lett. 7, 3315 (2007) doi:10.1021/nl071530x

    Article  CAS  Google Scholar 

  13. H. Zhou, D. Kumar, A. Kvit, A. Tiwari, J. Narayan, J. Appl. Phys. 94, 4841 (2003). doi:10.1063/1.1609046

    Article  CAS  Google Scholar 

  14. H. Wise, J. Oudar, Material Concepts in Surface Reactivity and Catalysis, (Academic, San Diego, 1990)

    Google Scholar 

  15. H.S. Venugopalan, S.E. Mohney, B.P. Luther, S.D. Wolter, J.M. Redwing, J. Appl. Phys. 82, 650 (1997). doi:10.1063/1.365593

    Article  CAS  Google Scholar 

  16. D. Aurongzeb, S. Pantibandla, M. Holtz, H. Temkin, Appl. Phys. Lett. 86, 103107 (2005). doi:10.1063/1.1880452

    Article  Google Scholar 

  17. G. Kipshidze, B. Yavich, A. Chandolu, J. Yun, V. Kuryatkov, I. Ahmad, D. Aurongzeb, M. Holtz, H. Temkin, Appl. Phys. Lett. 86, 2811 (2005). doi:10.1063/1.1850188

    Article  Google Scholar 

  18. D. Kapolnek, X.H. Wu, B. Heying, S. Keller, B.P. Keller, U.K. Mishra, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 67, 1541 (1995). doi:10.1063/1.114486

    Article  CAS  Google Scholar 

  19. E.I. Givargizov, J. Cryst. Growth 31, 20 (1975). doi:10.1016/0022-0248(75)90105-0

    Article  CAS  Google Scholar 

  20. D.D. Koleske, A.E. Wickenden, R.L. Henry, W.J. DeSisto, R.J. Gorman, J. Appl. Phys. 84, 1998 (1998). doi:10.1063/1.368353

    Article  CAS  Google Scholar 

  21. D. Aurongzeb, M. Basavaraj, K. Bhargava Ram, G. Kipshidze, B. Yavich, S. Nikishin, H. Temkin, M. Holtz, J. Appl. Phys. 99, 014308 (2006). doi:10.1063/1.2159077

    Article  Google Scholar 

  22. O. Brandt, H. Yang, K.H. Ploog, Phys. Rev. B 54, 4432 (1996). doi:10.1103/PhysRevB.54.4432

    Article  CAS  Google Scholar 

  23. A. Munkholm, G.B. Stephenson, J.A. Eastman, C. Thompson, P. Fini, J.S. Speck, O. Auciello, P.H. Fuoss, S.P. DenBaars, Phys. Rev. Lett. 83, 741 (1999). doi:10.1103/PhysRevLett.83.741

    Article  CAS  Google Scholar 

  24. H.W. Choi, M.G. Cheong, M.A. Rana, S.J. Chua, T. Osipowicz, J.S. Pan, J. Vac. Sci. Technol. B 21, 1080 (2003). doi:10.1116/1.1577570

    Article  CAS  Google Scholar 

  25. J.K. Jian, X.L. Chen, Q.Y. Tu, Y.P. Xu, L. Dai, M. Zhao, J. Phys. Chem. B 108, 12024 (2004). doi:10.1021/jp048420o

    Article  CAS  Google Scholar 

  26. I. Shalish, V. Narayanamurti, H. Temkin, Phys. Rev. B 69, 245401 (2004). doi:10.1103/PhysRevB.69.245401

    Article  Google Scholar 

  27. J. Groebner, R. Wenzel, G.G. Fisher, R. Schmid-Fetzer, J. Phase Equilib. 20, 615 (1999)

    Article  Google Scholar 

  28. M.F. Lai, Z.H. Wei, C.R. Chang, J.C. Wu, W.Z. Hsieh, N.A. Usov, J.Y. Lai, Y.D. Yao, J. Appl. Phys. 93, 7426 (2003). doi:10.1063/1.1558588

    Article  CAS  Google Scholar 

  29. L.S. Hsu, Y.K. Wang, G.Y. Guo, J. Appl. Phys. 92, 1419 (2002). doi:10.1063/1.1491018

    Article  CAS  Google Scholar 

  30. A. Aguayo, I.I. Mazin, and D.J. Singh, Phys. Rev. Lett. 92, 147201 (2004). doi:10.1103/PhysRevLett.92.147201

    Google Scholar 

  31. J.E. Northrup, J. Neugebauer, R.M. Feenstra, A.R. Smith, Phys. Rev. B 61, 9932 (2000). doi:10.1103/PhysRevB.61.9932

    Article  CAS  Google Scholar 

  32. V.M. Bermudez, R. Kaplan, M.A. Khan, J.N. Kuznia, Phys. Rev. B 48, 2436 (1993). doi:10.1103/PhysRevB.48.2436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support of this research by the National Science Foundation (CTS-0210141 and ECS-0304224) and the J. F Maddox Foundation. TEM work was carried out in the Center for Microanalysis of Materials, University of Illinois, which is partially supported by the U.S. Department of Energy under Grant DEFG02-91-ER45439. The authors would like to thank Dr. J.G. Wen for help with the TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Holtz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aurongzeb, D., Song, D., Kipshidze, G. et al. Growth of GaN Nanowires on Epitaxial GaN. J. Electron. Mater. 37, 1076–1081 (2008). https://doi.org/10.1007/s11664-008-0483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0483-7

Keywords

Navigation