Skip to main content
Log in

Numerical Investigation of Grain Structure Under the Rotating Arc Based on Cellular Automata-Finite Element Method During Vacuum Arc Remelting Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The assumption of transient rotating arc distribution is more closer to the actual vacuum arc remelting (VAR) process, but there is still a lack of relevant research on the grain structure under the rotating arc. Based on this, a three-dimensional transient full-size CAFE model coupled with heat transfer, fluid flow, solidification, and grain nucleation is developed to predict the grain structure, which is validated by comparing the predicted results with the experimental observation. The heating effect of the electric arc on the molten pool is innovatively considered by incorporating a volume heat source in the form of a dynamic thin layer moving upward with ingot growth. The effects of melting rate, gas cooling, and nucleation parameters on the grain structure are studied, respectively, by this model. The results show that the proportion of equiaxed grain increases from 30.9 to 43.1 pct with the melting rate increasing from 0.048 to 0.072 kg/s. As the equivalent heat transfer coefficient in the shrinkage gap increases from a small value of radiation to 400 W/(m2 K), the proportion of equiaxed grain decreases from 37.2 to 18.0 pct. Increasing the melting rate can significantly refine the grains, while the effect caused by gas cooling is just the opposite. With the increase of the mean undercooling, the central equiaxed grain region is reduced and the mean surface area greatly increases, which is also contrary to the effect of the maximum volume nucleation density on the grain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P.O. Delzant, B. Baqué, P. Chapelle, and A. Jardy: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 958–68.

    Article  CAS  Google Scholar 

  2. G. Ghazal, A. Jardy, P. Chapelle, and Y. Millet: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 646–59.

    Article  Google Scholar 

  3. Y.D. Wang, L.F. Zhang, J. Zhang, Y. Zhou, T.Y. Liu, Y. Ren, and D.B. Jiang: Steel Res. Int., 2022, vol. 93, p. 2100408.

    Article  CAS  Google Scholar 

  4. L. Nastac, S. Sundarraj, K.O. Yu, and Y. Pang: JOM, 1998, vol. 50, pp. 30–35.

    Article  CAS  Google Scholar 

  5. H.C. Kou, Y.J. Zhang, P.F. Li, H. Zhong, R. Hu, J.S. Li, and L. Zhou: Rare Metal Mat. Eng., 2014, vol. 43, pp. 1537–42.

    Article  Google Scholar 

  6. Y.S. Huang, M.S. Yang, J.S. Li, and L.G. Bai: Mater. Sci. Forum, 2015, vol. 817, pp. 826–36.

    Article  Google Scholar 

  7. A. Kermanpur, D.G. Evans, R.J. Siddall, P.D. Lee, and M. Mclean: J. Mater. Sci., 2004, vol. 39, pp. 7175–82.

    Article  CAS  Google Scholar 

  8. X. Xu, W. Zhang, and P.D. Lee: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1805–15.

    Article  Google Scholar 

  9. C.R. Woodside, P.E. King, and C. Nordlund: Metall. Mater. Trans. B, 2013, vol. 44b, pp. 154–65.

    Article  CAS  Google Scholar 

  10. D.M. Shevchenko and R.M. Ward: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 263–70.

    Article  Google Scholar 

  11. K. Pericleous, G. Djambazov, M. Ward, L. Yuan, and P.D. Lee: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5365–76.

    Article  CAS  Google Scholar 

  12. E. Karimi-Sibaki, A. Kharicha, A. Vakhrushev, M. Abdi, M. Wu, A. Ludwig, J. Bohacek, and B. Preiss: J. Mater. Res. Technol, 2022, vol. 19, pp. 183–93.

    Article  CAS  Google Scholar 

  13. J.J. Cui, B.K. Li, Z.Q. Liu, F.S. Qi, J.X. Xu, and J. Zhang: J. Mater. Res. Technol, 2022, vol. 18, pp. 3991–4006.

    Article  CAS  Google Scholar 

  14. K. Mramor, T. Quatravaux, H. Combeau, A. Jardy, M. Založnik, I. Crassous, and A. Gaillac: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 2953–71.

    Article  CAS  Google Scholar 

  15. J.J. Cui, B.K. Li, Z.Q. Liu, F.S. Qi, B.J. Zhang, and J. Zhang: Metals, 2021, vol. 11, p. 2046.

    Article  CAS  Google Scholar 

  16. X.H. Wang and Y. Li: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 800–12.

    Article  CAS  Google Scholar 

  17. Z.H. Wang, S. Luo, W.L. Wang, and M.Y. Zhu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2882–94.

    Article  Google Scholar 

  18. P. Peng, L. Lu, Z.J. Liu, Y.L. Xu, X.D. Zhang, Z.K. Ma, H. Zhang, M. Guo, and L. Liu: J. Alloys Compd., 2022, vol. 927, 167009.

    Article  CAS  Google Scholar 

  19. S. Tin and T.M. Pollock: J. Mater. Sci., 2004, vol. 39, pp. 7199–7205.

    Article  CAS  Google Scholar 

  20. Z.C. Wang, J.R. Li, S.Z. Liu, J.Q. Zhao, X.G. Wang, and W.P. Yang: J. Alloys Compd., 2022, vol. 918, 165631.

    Article  CAS  Google Scholar 

  21. P.K. Sung and D.R. Poirier: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2173–81.

    Article  Google Scholar 

  22. S. Spitans, H. Franz, H. Scholz, G. Reiter, and E. Baake: Magnetohydrodynamics, 2017, vol. 53, pp. 557–70.

    Article  Google Scholar 

  23. J.J. Cui, B.K. Li, Z.Q. Liu, F.S. Qi, and X.P. Zhang: J. Mater. Res. Technol, 2022, vol. 20, pp. 1912–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51934002), National Science and Technology Major Project (J2019-VI-0005-0119), Youth Innovation Promotion Association CAS (No. 2020193), and 111 Project (B16009). The authors are grateful for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baokuan Li or Zhongqiu Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Li, B., Liu, Z. et al. Numerical Investigation of Grain Structure Under the Rotating Arc Based on Cellular Automata-Finite Element Method During Vacuum Arc Remelting Process. Metall Mater Trans B 54, 661–672 (2023). https://doi.org/10.1007/s11663-022-02716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02716-x

Navigation