Skip to main content
Log in

Three-Dimensional Characterization of Defects in Continuous Casting Blooms of Heavy Rail Steel Using X-ray Computed Tomography

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Three-dimensional characterization of defects in continuous casting blooms of a heavy rail steel with different electromagnetic stirring intensities at the solidification end, also named final electromagnetic stirring, was performed employing a laboratory-based X-ray computed tomography to evaluate the effect of final electromagnetic stirring on the internal quality of blooms. The three-dimensional distribution and morphology of defects including porosities and oxide inclusions in blooms were characterized. The amount, size and shape complexity of defects increased gradually from the loose-side surface to the center of blooms. The total volume fraction of defects was 5265 and 3942 ppm when the current of final electromagnetic stirring was 200 and 300 A, respectively. The sphericity of defects varied from 0.1 to 0.75, and the equivalent spherical diameter varied between 20 and 450 μm. Most defects with a sphericity > 0.6 were nearly spherical and were assumed to be oxide inclusions. The volume fraction of both porosities and inclusions was small in the chilled layer and the columnar crystal zone and then increased rapidly toward the equiaxed zone. Increasing the current of F-EMS from 200 to 300 A significantly decreased the volume fraction of porosities in the center of the bloom from 2906 to 1873 ppm. It could also decrease the volume fraction and average diameter of oxide inclusions in the bloom by reducing the number of large inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 1. S. Minakawa, I.V. Samarasekera and F. Weinberg: Metall. Trans. B, 1985, vol. 16, pp. 823-29.

    Article  Google Scholar 

  2. 2. E. Niyama, T. Uchida, M. Morikawa and S. Saito: Int. Cast Met. J., 1981, vol. 6, pp. 16-22.

    Google Scholar 

  3. 3. E. Niyama, T. Uchida, M. Morikawa and S. Saito: AFS Int. Cast. Met. J., 1982, vol. 7, pp. 52-63.

    Google Scholar 

  4. 4. H. An, Y. Bao, M. Wang, Q. Yang, X. Wang and Y. Dang: Metall. Res. Technol., 2019, vol. 116, pp. 621.

    Article  CAS  Google Scholar 

  5. 5. H. An, Y. Bao, M. Wang, Q. Yang and Y. Dang: Ironmaking Steelmaking, 2020, vol. 47, pp. 1063-77.

    Article  CAS  Google Scholar 

  6. 6. A. Costa: J. Mater. Res. Technol., 2019, vol. 8, pp. 2408-22.

    Article  Google Scholar 

  7. 7. C. Yang, P. Liu, Y. Luan, D. Li and Y. Li: Int. J. Fatigue, 2019, vol. 128, pp. 105193.

    Article  CAS  Google Scholar 

  8. M. Wu, W. Fang, R. Chen, B. Jiang, H. Wang, Y. Liu and H. Liang: Mater. Sci. Eng. A, 2019, vol. 744, pp. 324-34.

    Article  CAS  Google Scholar 

  9. 9. H. Fu, J.J. Rydel, A.M. Gola, F. Yu, K. Geng, C. Lau, H. Luo and E.J. Rivera: Int. J. Fatigue, 2019, vol. 129, pp. 104899.

    Article  CAS  Google Scholar 

  10. 10. H. Li, L. Wang, H. Xiao, J. Xu, S. Zheng, Q. Zhai and K. Han: Metall. Mater. Trans. A, 2018, vol. 50, pp. 336-47.

    Google Scholar 

  11. 11. L. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45, pp. 59-82.

    Article  CAS  Google Scholar 

  12. 12. Y. Ren, L. Zhang, W. Fang, S. Shao, J. Yang and W. Mao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1024-34.

    Article  Google Scholar 

  13. 13. W. Yang, L. Zhang, X. Wang, Y. Ren, X. Liu and Q. Shan: ISIJ Int., 2013, vol. 53, pp. 1401-10.

    Article  CAS  Google Scholar 

  14. 14. S. Yang, Q. Wang, L. Zhang, J. Li and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43, pp. 731-50.

    Article  Google Scholar 

  15. 15. L. Zhang: JOM, 2013, vol. 65, pp. 1138-44.

    Article  CAS  Google Scholar 

  16. 16. J. Lehmann, P. Rocabois and H. Gaye: J. Non-Cryst. Solids, 2001, vol. 282, pp. 61-71.

    Article  CAS  Google Scholar 

  17. 17. W. Yang, C. Guo, C. Li and L. Zhang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2267-73.

    Article  Google Scholar 

  18. 18. G. Cheng, L. Zhang and Y. Ren: Ironmaking Steelmaking, 2020, vol. 47, pp. 1217-25.

    Article  CAS  Google Scholar 

  19. 19. Y. Ren and L. Zhang: Ironmaking Steelmaking, 2019, vol. 46, pp. 558-63.

    Article  CAS  Google Scholar 

  20. 20. L. Gui, M. Long, Y. Huang, D. Chen, H. Chen, H. Duan and S. Yu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3280-92.

    Article  Google Scholar 

  21. 21. Y. Chu, W. Li, Y. Ren and L. Zhang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2047-62.

    Article  Google Scholar 

  22. 22. Y. Ren, L. Zhang and P.C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2281-92.

    Article  Google Scholar 

  23. 23. J. Wang, W. Li, Y. Ren and L. Zhang: Steel Res. Int., 2019, vol. 90, pp. 1800600.

    Article  Google Scholar 

  24. 24. W. Yang, C. Guo, L. Zhang, H. Ling and C. Li: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2717-30.

    Article  Google Scholar 

  25. 25. L. Zhang, C. Guo, W. Yang, Y. Ren and H. Ling: Metall. Mater. Trans. B, 2018, vol. 49, pp. 803-11.

    Article  Google Scholar 

  26. 26. J. Kastner, B. Harrer and H.P. Degischer: Mater. Charact., 2011, vol. 62, pp. 99-107.

    Article  CAS  Google Scholar 

  27. 27. T. Li, S. Shimasaki, S. Taniguchi, K. Uesugi and S. Narita: ISIJ Int., 2013, vol. 53, pp. 1943-52.

    Article  CAS  Google Scholar 

  28. 28. T. Li, S.I. Shimasaki, S. Taniguchi, S. Narita and K. Uesugi: ISIJ Int., 2016, vol. 56, pp. 1989-95.

    Article  CAS  Google Scholar 

  29. 29. J. Yan, T. Li, Z. Shang and H. Guo: Mater. Charact., 2019, vol. 158, pp. 109944.

    Article  CAS  Google Scholar 

  30. 30. W. Yang, L. Zhang, Y. Ren, H. Duan, Y. Zhang and X. Xiao: Acta Metall. Sinica, 2015, vol. 52, pp. 217-23.

    Google Scholar 

  31. D. Kumar, R. Cunningham and P. Chris Pistorius: AISTech 2018 Iron and Steel Technology Conference and Exposition, United states, 2018, pp. 1493–1500.

  32. 32. X. Zhang, L. Zhang, W. Yang and Y. Dong: Steel Res. Int., 2017, vol. 88, pp. 1600080.

    Article  Google Scholar 

  33. 33. Q. Dong, J. Zhang and X. Zhao: Metall. Res. Technol., 2017, vol. 114, pp. 303.

    Article  CAS  Google Scholar 

  34. 34. T. Piwonka and M. Flemings: Trans. Metall. Soc. of AIME, 1966, vol. 36, pp. 1157-65.

    Google Scholar 

  35. 35. T. Piwonka, S. Kuyucak and K. Davis: Trans. Am. Foundry Soc., 2002, vol. 113, pp. 1257-71.

    Google Scholar 

  36. 36. D. Li, X. Chen, P. Fu, X. Ma, H. Liu, Y. Chen, Y. Cao, Y. Luan and Y. Li: Nat. Commun., 2014, vol. 5, pp. 5572.

    Article  CAS  Google Scholar 

  37. 37. Y. Cao, Y. Chen and D. Li: Acta Mater., 2016, vol. 107, pp. 325-36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation of China (Grant Nos. 51874031, U1860206, 51725402), the Fundamental Research Funds for the Central Universities (Grant No. FRF-BD-20-04A), the S&T Program of Hebei (Grant Nos. 20311004D, 20311005D, 20311006D, 20591001D), the High Steel Center (HSC), Hebei Innovation Center of the Development and Application of High Quality Steel Materials, Hebei International Research Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials at Yanshan University, and Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM) at the University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Zhang or Wen Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 11 January 2021; accepted 2 April 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Lei, X., Zhang, L. et al. Three-Dimensional Characterization of Defects in Continuous Casting Blooms of Heavy Rail Steel Using X-ray Computed Tomography. Metall Mater Trans B 52, 2327–2340 (2021). https://doi.org/10.1007/s11663-021-02172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02172-z

Navigation