Skip to main content
Log in

Phosphorus Removal from Si-Fe Alloy Using SiO2-Al2O3-CaO Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Phosphorus removal from silicon using a combination of solvent and slag refining, with lower carbon footprint and lower energy requirement than the current industrial process, is investigated by evaluating the distribution of phosphorus between Si-Fe alloy and SiO2-Al2O3-CaO slag. An alloy with the composition of silicon-20 wt pct iron was treated with a slag of CaO-Al2O3-SiO2 at 1600 °C. The effects of slag basicity and oxygen potential on the distribution of phosphorus were studied via changing the slag composition. The critical oxygen potential, at which the maximum removal of phosphorus is obtained, was calculated as 6.3 × 10−18 atm. Normalized distribution and phosphate capacity values were calculated for each slag composition with the purpose of isolating the effect of basicity. In a separate experiment, calcium was also added to the alloy with the purpose of improving the removal efficiency of phosphorus. Results show that the addition of calcium can almost double the partition ratio of phosphorus. The removal rate of phosphorus was quantified via kinetics calculations, and the total mass-transfer rate of phosphorus was estimated to be 8.58 × 10−7 cm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1. Gøran Bye and Bruno Ceccaroli, Sol. Energy Mater. Sol. Cells 2014, vol. 130, pp. 634-646.

    Article  Google Scholar 

  2. 2. Yubo Jiao, Alex Salce, Wade Ben, Feng Jiang, Xiaoyang Ji, Evan Morey and David Lynch, JOM 2011, vol. 63, pp. 28-31.

    Article  Google Scholar 

  3. 3. AFB Braga, SP Moreira, PR Zampieri, JMG Bacchin and PR Mei, Sol. Energy Mater. Sol. Cells 2008, vol. 92, pp. 418-424.

    Article  Google Scholar 

  4. 4. BR Bathey and MC Cretella, J. Mater. Sci. 1982, vol. 17, pp. 3077-3096.

    Article  Google Scholar 

  5. 5. Takashi Ikeda and Masafumi Maeda, ISIJ Int. 1992, vol. 32, pp. 635-642.

    Article  Google Scholar 

  6. 6. JCS Pires, J Otubo, AFB Braga and PR Mei, J. Mater. Process. Technol. 2005, vol. 169, pp. 16-20.

    Article  Google Scholar 

  7. 7. Xu Peng, Wei Dong, Yi Tan and Dachuan Jiang, Vacuum 2011, vol. 86, pp. 471-475.

    Article  Google Scholar 

  8. MD Johnston, LT Khajavi, M Li, S Sokhanvaran and M Barati, JOM 2012, vol. 64, pp. 935-945.

    Article  Google Scholar 

  9. I Obinata and N Komatsu: Sci Rep Res Inst Tohoku Univ Ser A 1957, vol. 9, pp. 118–130.

    Google Scholar 

  10. 10. Yunfei He, Wenhui Ma, Guoqiang Lv, Yufeng Zhang, Yun Lei and Xi Yang, J. Cleaner Prod. 2018, vol. 185, pp. 389-398.

    Article  Google Scholar 

  11. 11. Aleksandar M Mitrašinović and Torstein A Utigard, Metall. Mater. Trans. B 2012, vol. 43, pp. 379-387.

    Google Scholar 

  12. 12. Z Yin, A Oliazadeh, S Esfahani, M Johnston and M Barati, Can. Metall. Q. 2011, vol. 50, pp. 166-172.

    Article  Google Scholar 

  13. 13. Shaghayegh Esfahani and Mansoor Barati, Met. Mater. Int. 2011, vol. 17, pp. 823-829.

    Article  Google Scholar 

  14. 14. Shaghayegh Esfahani and Mansoor Barati, Met. Mater. Int. 2011, vol. 17, pp. 1009-1015.

    Article  Google Scholar 

  15. 15. Takeshi Yoshikawa and Kazuki Morita, J. Cryst. Growth 2009, vol. 311, pp. 776-779.

    Article  Google Scholar 

  16. 16. Aleksandar M Mitrašinović and Torstein A Utigard, Silicon 2009, vol. 1, pp. 239-248.

    Article  Google Scholar 

  17. 17. Shigeru Ueda, Kazuki Morita and Nobuo Sano, Metall. Mater. Trans. B 1997, vol. 28, pp. 1151-1155.

    Article  Google Scholar 

  18. 18. Ali Hosseinpour and Leili Tafaghodi Khajavi, Miner. Process. Extr. Metall. Rev. 2018, vol. 39, pp. 308-318.

    Article  Google Scholar 

  19. HM Liaw and FS Aragona, Sol. Cells 1983, vol. 10, pp. 109-118.

    Article  Google Scholar 

  20. 20. Jae Hong Shin and Joo Hyun Park, Metall. Mater. Trans. B 2012, vol. 43, pp. 1243-1246.

    Google Scholar 

  21. 21. Mark Li, Torstein Utigard and Mansoor Barati, Metall. Mater. Trans. B 2014, vol. 45, pp. 221-228.

    Article  Google Scholar 

  22. 22. Ali Hosseinpour and Leili Tafaghodi Khajavi, J. Alloys Compd. 2018, vol. 768, pp. 545-552.

    Article  Google Scholar 

  23. 23. Lars Klemet Jakobsson and Merete Tangstad, Metall. Mater. Trans. B 2014, vol. 45, pp. 1644-1655.

    Article  Google Scholar 

  24. 24. BJ Keene, KC Mills and M Susa, Dusseldorf, Germany: Verlag Stahleisen 1995.

    Google Scholar 

  25. E Bélisle, CW Bale, P Chartrand, SA Decterov, G Eriksson, AE Gheribi, K Hack, IH Jung, YB Kang, J Melançon, AD Pelton, S Petersen, C Robelin, J Sangster and M-A Van Ende, Calphad 2016, vol. 54, pp. 35-53

    Article  Google Scholar 

  26. 26. J Chipman, JC Fulton, N Gokcen and GR Caskey Jr, Acta Metall. 1954, vol. 2, pp. 439-450.

    Article  Google Scholar 

  27. 27. Kousuke Kume, Kazuki Morita, Takahiro Miki and Nobuo Sano, ISIJ Int. 2000, vol. 40, pp. 561-566.

    Article  Google Scholar 

  28. 28. MD Johnston and M Barati, Sol. Energy Mater. Sol. Cells 2010, vol. 94, pp. 2085-2090.

    Article  Google Scholar 

  29. 29. Leili Tafaghodi Khajavi and Mansoor Barati, Metall. Mater. Trans. B 2017, vol. 48, pp. 268-275.

    Article  Google Scholar 

  30. 30. John A Duffy, J. Non-Cryst. Solids 1989, vol. 109, pp. 35-39.

    Article  Google Scholar 

  31. M. Susa and K.C. Mills: Optical Properties of Slags: Data for Refractive Indices and Absorption Coefficients, 1995.

  32. 32. DJ Min and N Sano, Metall. Trans. B 1988, vol. 19, pp. 433-439.

    Article  Google Scholar 

  33. 33. Tomohito Shimpo, Takeshi Yoshikawa and Kazuki Morita, Metall. Mater. Trans. B 2004, vol. 35, pp. 277-284.

    Article  Google Scholar 

  34. 34. YV Meteleva-Fischer, Y Yang, R Boom, B Kraaijveld and H Kuntzel, Intermet. 2012, vol. 25, pp. 9-17.

    Article  Google Scholar 

  35. S. Josef: Die Grössenbestimmung der im Gemischnebel von Verbrennungskraftmaschinen vohrhandenen Brennstoffteilchen:(Mitteilung aus dem Laboratorium für Technische Physik der Technischen Hochschule München), VDI-Verlag, 1926.

Download references

Acknowledgments

The authors would like to acknowledge the partial support from the Natural Sciences and Engineering Research Council of Canada (NSERC, RGPIN-2017-04669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hosseinpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinpour, A., Tafaghodi Khajavi, L. Phosphorus Removal from Si-Fe Alloy Using SiO2-Al2O3-CaO Slag. Metall Mater Trans B 50, 1773–1781 (2019). https://doi.org/10.1007/s11663-019-01586-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01586-0

Navigation