Skip to main content
Log in

In Situ Observation of the Precipitation, Aggregation, and Dissolution Behaviors of TiN Inclusion on the Surface of Liquid GCr15 Bearing Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the precipitation, aggregation, and dissolution behaviors of TiN inclusions on the surface of liquid GCr15 bearing steel have been investigated by combining the observations of confocal laser scanning microscope (CLSM) and field emission scanning electron microscope (FE-SEM) with those obtained from energy dispersive spectrometer (EDS) and theoretical analysis. The kinetic results show that the initial concentration of Ti and N are 0.0078 and 0.0049, respectively, the precipitation temperature is between 1640 K and 1680 K (1367 °C and 1407 °C), and the local cooling rate is between 0.5 and 10 K/s; TiN inclusion can precipitate only when the solid fraction is higher than 0.847 and its precipitation radius is between 1 and 6 μm. The precipitation radius of a TiN inclusion in the GCr15 bearing steel sheet can be reduced by decreasing the N content and increasing the cooling strength. The aggregation and densification of multi-particle aggregated TiN inclusions are verified by CLSM observation and theoretical analysis. The inclusions are aggregated by the cavity bridge force (CBF), and the aggregated TiN is formed by solid-phase sintering. The results of force analysis show that CBF plays a dominant role in the aggregation process of the inclusions. The atomic ratio of Ti and V obtained by EDS is 18:1, which may melt TiN and form the liquid inclusion at 1688 K (1415 °C) observed by CLSM. The theoretical analysis is conducted for the dissolution of the TiN inclusions observed by CLSM, which shows that the dissolution of the TiN inclusions is related to the size of the inclusions; the larger the size, the greater the dissolution rate. The long-strip TiN inclusion may be formed by the Ostwald ripening of two TiN inclusions. The TiN inclusions smaller than 3 μm in the GCr15 bearing steel may be formed by the dissolved Ti and N generated by the dissolution of TiN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] W. Ma, Y. Bao, and L. Zhao, and M. Wang: Int. J. Mine. Metall. Mater., 2014, vol. 21, pp. 234-39.

    Article  CAS  Google Scholar 

  2. [2] Y. Liu, L. Zhang, and H. Duan, Y. Zhang, Y. Luo,and A. N. Conejo: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3015-25.

    Article  Google Scholar 

  3. [3] H. Y. Liu, H. L. Wang, L. Li, J. Q. Zheng, Y. H. Li and X. Y. Zeng: Ironmak. and Steelmak., 2013, vol. 38: 53-58.

    Article  Google Scholar 

  4. J. I. Takamura, and S. Mizoguchi: Proc. Int. Iron and Steel Congr., 6th, 1990, pp. 591–97.

  5. [5] H. Ohta, R. Inoue, and H. Suito: ISIJ Int., 2008, vol. 48, pp. 294-300.

    Article  CAS  Google Scholar 

  6. [6] X. Yin, Y. Sun, Y. Yang, X. Bai, M. Barati, and A. Mclean, Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3274-84.

    Article  Google Scholar 

  7. [7] W. Yan, Y. Shan, and K. Yang: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2147-58.

    Article  CAS  Google Scholar 

  8. [8] S. Kanazawa, A. Nakashima, K. Okamoto, and K. Kanaya: Armaghan Danesh, 1975, vol. 61, pp. 130-40.

    Google Scholar 

  9. [9] Y. Tomita, N. Saito, T. Tsuzuk, Y. Tokunaga, and K. Okamo: ISIJ Int.,1994, vol. 34, pp. 829-35.

    Article  CAS  Google Scholar 

  10. [10] M.A. Linaza, J.L. Romero, J.M. Rodriguez-Ibabe, and J.J.Urcola: Scr. Metall. Mater., 1993, vol. 29, pp. 451-56.

    Article  CAS  Google Scholar 

  11. H. Todoroki, and N. Shiga: Proceedings of the International Congress on Science and Technology of Steelmaking, ISIJ, Tokyo, Japan, 2008, pp. 121–24.

  12. [12] K. Oikawa, H. Ohtani, K. Ishida, and T. Nishizawa: ISIJ Int., 1995, vol. 35, pp. 402-08.

    Article  Google Scholar 

  13. [13] S. Mukae, K. Nishio, M. Katoh, and T. Isayama: Journal of the Japan Welding Society, 1985, vol. 3, pp. 567-74.

    Article  CAS  Google Scholar 

  14. [14] H. Mabuchi, R. Uemori, and M. Fujioka: ISIJ Int., 1996, vol. 39, pp. 1406-12.

    Article  Google Scholar 

  15. [15] M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, E. Rahimi: Micron, 2013, vol. 45, pp. 107-14.

    Article  CAS  Google Scholar 

  16. [16] P. Misra, S. Sridhar, and A.W. Cramb: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 963-67.

    Article  CAS  Google Scholar 

  17. [17] Y. Zhang, X. Li, and H. Ma: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2148-56.

    Article  Google Scholar 

  18. [18] X. Wan, B. Zhou, K. C. Nune, Y. Li, K. Wu, and G. Li: Science & Technology of Welding & Joining, 2016, vol. 22, pp. 343-52.

    Article  Google Scholar 

  19. [19] L. Yang, G. Cheng, S. Li, M.Zhao, and G. Feng: ISIJ Int., 2015, vol. 55, pp. 1901-05.

    Article  CAS  Google Scholar 

  20. [20] Q. Tian, G. Wang, Y. Zhao, J. Li, and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1149-64.

    Article  Google Scholar 

  21. [21] H. Suito, H. Ohta: ISIJ Int., 2006, vol. 46, pp. 33-41.

    Article  CAS  Google Scholar 

  22. [22] G.M. Gulliver: Metallic Alloys, Griffen, London, 1922.

    Google Scholar 

  23. [23] E. Scheil: Zeitschrift Metallkunde, 1942, vol. 34, pp. 70-72.

    Google Scholar 

  24. [24] E. Gao, G. Zou, W. Wang, F. Ma, and X. Luo: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1014-23.

    Article  Google Scholar 

  25. [25] Y. Won, B. G. Thomas: Metall. Mater.Trans. A, 2001, vol. 32A, pp. 1755-67.

    Article  CAS  Google Scholar 

  26. [26] F. Huang, J. Zhang, X. Wang, S. Wang, Y. Fang, and Y. Yu.: J. Iron Steel Res., 2008, vol. 20, pp. 14-19.(in Chinese).

    Google Scholar 

  27. [27] K. Sasai: ISIJ Int., 2016, vol. 56, pp. 1013-22.

    Article  CAS  Google Scholar 

  28. [28] K. Sasai: ISIJ Int., 2014, vol. 54, pp. 2780-89.

    Article  CAS  Google Scholar 

  29. [29] M. Nakamoto, T. Tanaka, M. Suzuki, K. Taguchi, Y. Tsukaguchi, and T. Yamamoto: ISIJ Int., 2014, vol. 54, pp. 1195-203.

    Article  CAS  Google Scholar 

  30. [30] R. N. Lumley, T. B. Sercombe, and G. M. Schaffer: Metall. Mater.Trans. A, 1999, vol. 30A, pp. 457-63.

    Article  CAS  Google Scholar 

  31. [31] C. Xuan, A. V. Karasev, P. G. Jönsson, and K. Nakajima: Steel Res. Int., 2016, vol. 87, pp. 1-9.

    Article  Google Scholar 

  32. [32] K. Wu: Principles of Metallurgical Transport, 1th ed., Metallurgical Industry Press, Beijing, 2011, pp. 7.

    Google Scholar 

  33. [33] Y. Sui, G. Sun, Y. Zhao, C. Wang, M. Guo, and M. Zhang: J. Univ. Sci. Technol. Beijing., 2014, vol. 36, pp. 1174-82.

    CAS  Google Scholar 

  34. [34] L. Zhang, C. Guo, W. Yang, Y. Ren, H. Ling: Metall. Mater.Trans. B, 2018, vol. 49B, pp. 803-11.

    Article  Google Scholar 

  35. W. Ostwald: Lehrbuch der Allgemeinen Chemie, 1896, Vol. 2.

  36. [36] W. Ostwald: Zeitschrift Für Physikalische Chemie, 1897, vol. 22, pp. 289-330.

    CAS  Google Scholar 

  37. [37] R. Tadmor: J. Phys. Cond. Mat., 2001,vol. 13, pp. 195-202.

    Article  Google Scholar 

  38. [38] I. M. Lifshitz, and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  39. [39] C. Wagner: Zeitschrift für Elektrochemie, 1961, vol. 65, pp. 581-91.

    CAS  Google Scholar 

  40. [40] H. B. Aaron: Metal Sci.,1968, vol. 2, pp. 192-93.

    Article  CAS  Google Scholar 

  41. [41] L. Cheng, E. Hawbolt, and T. Meadowcroft: Metall. Mater.Trans. A, 2000, vol. 31A, pp. 1907-16.

    Article  CAS  Google Scholar 

  42. [42] J. Moon, C. Lee, S. Uhm, and J. Lee: Acta Mater., 2006, vol. 54, pp. 1053-61.

    Article  CAS  Google Scholar 

  43. [43] T. Hong, and T. Debroy: Metall. Mater.Trans. B, 2003, vol. 34B, pp. 267-269.

    Article  CAS  Google Scholar 

  44. [44] T. Hong, and T. Debroy: Ironmak. and Steelmak., 2001, vol. 28, pp. 450-54.

    Article  CAS  Google Scholar 

  45. [45] T. Hong, and T. Debroy: Scr. Mater.,2001, vol. 44, pp. 847-52.

    Article  CAS  Google Scholar 

  46. [46] M.J. Whelan: Met. Sci. J., 1969, vol. 3, pp. 95-97.

    Article  CAS  Google Scholar 

  47. Y. Jin, and S. Du: Ironmak. Steelmak., 2016, published online, pp. 1–6.

  48. [48] S. Lee, Y. Oh, and K. Yi: Mater. Trans., 2002, vol. 43, pp. 518-22.

    Article  CAS  Google Scholar 

  49. [49] Y. Chen, Y. Bao, M. Wang, X. Cai, L. Wang, and L. Zhao: ISIJ Int., 2014, vol. 54, pp. 2215-20.

    Article  CAS  Google Scholar 

  50. [50] P. Chen, C. Zhu, G. Li, Y. Dong, and Z. Zhang: ISIJ Int., 2017, vol. 57, pp. 1019-28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully express their appreciation to Natural Science Foundation of China (51634004); The Union Foundation of State Key Laboratory of Marine Equipment and Applications—University of Science and Technology Liaoning (SKLMEA - USTL - 201706); The Open Project Foundation of the Key Laboratory of Electromagnetic Process Material, Northeastern University, China (NEU - EPM - 001); and Natural Science Foundation of China (51474125) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guocheng Wang.

Additional information

Manuscript submitted March 9, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Q., Wang, G., Shang, D. et al. In Situ Observation of the Precipitation, Aggregation, and Dissolution Behaviors of TiN Inclusion on the Surface of Liquid GCr15 Bearing Steel. Metall Mater Trans B 49, 3137–3150 (2018). https://doi.org/10.1007/s11663-018-1411-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1411-8

Keywords

Navigation