Skip to main content
Log in

Control of Carbide Precipitation During Electroslag Remelting-Continuous Rapid Solidification of GCr15 Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of the electroslag remelting-continuous rapid solidification (ESR-CRS) process on element segregation and carbide precipitation in GCr15 bearing steel was investigated. The results showed that a microstructure with fewer primary carbides and less segregation can be achieved via the ESR-CRS process. In the specimen subjected to ESR, the morphology of primary carbide changed from angular to lumplike. After the ESR-CRS process, the dimension of primary carbide and the mass fraction of Cr in primary carbide decreased. With the increase of cooling intensity during the ESR-CRS process, the microstructure of ESR ingot became more refined and uniform and the size of large primary carbides in ESR ingot gradually decreased. Suppressing the formation of grain boundary cementite and primary carbide during ESR of GCr15 steel is beneficial to inhibiting the presence of large secondary carbide formation after annealing. With the increase of cooling intensity, the mass fraction of carbides in ESR ingot decreased and the mass fraction of Cr in carbides increased, whereas the types of carbides did not change; all the M3C, M3C2, and M7C3 exist before and after ESR-CRS. Al2O3 inclusions promoted the formation of Ti(N,C) by serving as preferred heterogeneous nucleation sites, whereas the formation of Ti(N,C) was suppressed through the refinement of Al2O3 inclusions by increasing the cooling intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. L. Yang, G.G. Cheng, S.J. Li, M. Zhao, and G.P. Feng: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 1266–72.

    Article  Google Scholar 

  2. X.B. Li, H. Ding, Z.Y. Tang, and J.C. He: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 21–29.

    Article  Google Scholar 

  3. A. Scholes: Ironmaking Steelmaking, 2005, vol. 32, pp. 101–08.

    Article  Google Scholar 

  4. M.C. Flemings: ISIJ Int., 2000, vol. 40, pp. 833–41.

    Article  Google Scholar 

  5. M. Wang, X.D. Zha, M. Gao, Y.C. Ma, K. Liu, and Y. Y. Li: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5217–31.

    Article  Google Scholar 

  6. H. Sun and J. Zhang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1133–49.

    Article  Google Scholar 

  7. L.Z. Chang, X.F. Shi, J.Q. Cong, and R.X. Wang: Ironmaking Steelmaking, 2014, vol. 41, pp. 611–17.

    Article  Google Scholar 

  8. K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii, and K. Ono: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1289–1300.

    Article  Google Scholar 

  9. N.V. Luzginova, L. Zhao, and J. Sietsma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 513–21.

    Article  Google Scholar 

  10. Z.X. Li, C.S. Li, J. Zhang, B.Z. Li, and X.D. Pang: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3607–21.

    Article  Google Scholar 

  11. M.K. El-Fawkhry, A.M. Fathy, and M.M. Eissa: Steel Res. Int., 2014, vol. 85, pp. 885–90.

    Article  Google Scholar 

  12. Y.W. Dong, Z.H. Jiang, and Z.B. Li: J. Iron Steel Res. Int., 2009, vol. 16, pp. 7–11.

    Article  Google Scholar 

  13. H. Halfa: Steel Res. Int., 2013, vol. 84, pp. 495–510.

    Article  Google Scholar 

  14. S.K. Maity, N.B. Ballal, G. Goldhahn, and R. Kawalla: ISIJ Int., 2009, vol. 49, pp. 902–10.

    Article  Google Scholar 

  15. Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2010, p. 66.

    Google Scholar 

  16. V.I. Chumanov and I.V. Chumanov: Part I, Russ. Metall., 2011, vol. 7, pp. 515–21.

    Article  Google Scholar 

  17. Y.Q. Du, J.L. Sun, Y.X. Zheng, and F. Jiang: Forg. Stamp. Technol., 2015, vol. 40, pp. 71–76.

    Google Scholar 

  18. S.H. Suh and J. Choi: Trans. ISIJ, 1986, vol. 26, pp. 305–09.

    Article  Google Scholar 

  19. Z.B. Li: Spec. Steel, 2004, vol. 25, pp. 1–5.

    Google Scholar 

  20. X.M. Zang and Z. Jiang: Metall. Metall. Eng., 2008, vol. 105, pp. 80–83.

    Google Scholar 

  21. L. Rao, J.H. Zhao, Z.X. Zhao, G. Ding, and M.P. Geng: J. Iron Steel Res. Int., 2014, vol. 21, pp. 644–52.

    Article  Google Scholar 

  22. L.Z. Chang and Z.B. Li: Steelmaking, 2007, vol. 23, pp. 56–58.

    Google Scholar 

  23. L.Z. Chang, X.F. Shi, H.S. Yang, and Z.B. Li: J. Iron Steel Res. Int., 2009, vol. 16, pp. 7–11.

    Article  Google Scholar 

  24. G. Hoyle: Electroslag Processes: Principles and Practice, Applied Science Publishers, London, 1983.

    Google Scholar 

  25. Z.H. Jiang: The Physical Chemistry and Transport Phenomena in Electroslag Metallurgy, Northeastern University Publishers, Shenyang, 2000.

    Google Scholar 

  26. Y.T. Wang, Y. Adachi, K. Nakajima, and Y. Sugimoto: Acta Mater., 2010, vol. 58, pp. 4849–58.

    Article  Google Scholar 

  27. J.D. Verhoeven: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2431–38.

    Article  Google Scholar 

  28. G.V. Pervushin and H. Suito: ISIJ Int., 2001, vol. 41, pp. 748–56.

    Article  Google Scholar 

  29. L. Yang, G.G. Cheng, S.J. Li, M. Zhao, and G.P. Feng: ISIJ Int., 2015, vol. 55, pp. 1693–98.

    Article  Google Scholar 

  30. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.

    Article  Google Scholar 

  31. A. Taylor and B.J. Kagle: Crystallographic Data on Metal and Alloy Structures, Dover Publications Inc, New York, NY, 1963, pp. 193–263.

    Google Scholar 

  32. K. Yamamoto, T. Sato, and E. Iwamura: J. Surf. Finish. Soc. Jpn., 1999, vol. 50, pp. 52–57.

    Article  Google Scholar 

  33. C.J. Engberg and E.H. Zehms: J. Am. Ceram. Soc., 1959, vol. 42, pp. 300–05.

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Foundation of State Key Laboratory of Advanced Metallurgy of China (Grant No. 41614014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Du.

Additional information

Manuscript submitted March 28, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Li, J. & Wang, ZB. Control of Carbide Precipitation During Electroslag Remelting-Continuous Rapid Solidification of GCr15 Steel. Metall Mater Trans B 48, 2873–2890 (2017). https://doi.org/10.1007/s11663-017-1089-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1089-3

Keywords

Navigation