Skip to main content
Log in

The Effect of Carbonaceous Reductant Selection on Chromite Pre-reduction

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Ferrochrome (FeCr) production is an energy-intensive process. Currently, the pelletized chromite pre-reduction process, also referred to as solid-state reduction of chromite, is most likely the FeCr production process with the lowest specific electricity consumption, i.e., MWh/t FeCr produced. In this study, the effects of carbonaceous reductant selection on chromite pre-reduction and cured pellet strength were investigated. Multiple linear regression analysis was employed to evaluate the effect of reductant characteristics on the aforementioned two parameters. This yielded mathematical solutions that can be used by FeCr producers to select reductants more optimally in future. Additionally, the results indicated that hydrogen (H)- (24 pct) and volatile content (45.8 pct) were the most significant contributors for predicting variance in pre-reduction and compressive strength, respectively. The role of H within this context is postulated to be linked to the ability of a reductant to release H that can induce reduction. Therefore, contrary to the current operational selection criteria, the authors believe that thermally untreated reductants (e.g., anthracite, as opposed to coke or char), with volatile contents close to the currently applied specification (to ensure pellet strength), would be optimal, since it would maximize H content that would enhance pre-reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ISSF: Stainless steel demand index 2011. International Stainless Steel Forum, 2011. http://www.worldstainless.org/Statistics/Demand+index/. Accessed 20 January 2012.

  2. W-S. Lee and C-F. Lin: Mater. Trans., 2001, vol. 42, pp. 2080–86.

    Article  Google Scholar 

  3. R.A. Lula, J.G. Parr and A. Hanson: Stainless Steel, American Society for Metals, Metals Park, 1986, pp. 60–70.

    Google Scholar 

  4. M. Gasik: Handbook of Ferroalloys - Theory and Technology, Butterworth-Heinemann, Oxford, 2013.

    Google Scholar 

  5. B.B. Lind, A-M. Fällman and L.B. Larsson: Waste Manage., 2001, vol. 21, pp. 255–64.

    Article  Google Scholar 

  6. ICDA: Statistical Bulletin 2013 edition, International Chromium Development Association, Paris, 2013.

    Google Scholar 

  7. ICDA: Ferrochrome. (International Chromium Development Association, 2013). http://www.icdacr.com/market-intelligence/fecr-brch/fecr-brch.pdf. Accessed 1 June 2012.

  8. S. Dwarapudi, V. Tathavadkar, B.C. Rao, T.K.S. Kumar, T.K. Ghosh and M. Denys: ISIJ Int., 2013, vol. 53, no. 1, pp. 9–17.

    Article  Google Scholar 

  9. B.W. Neizel, J.P. Beukes, P.G. van Zyl, and N.F. Dawson: Miner. Eng., 2013, vol. 45, pp. 115–20, DOI:10.1016/j.mineng.2013.02.015.

  10. 10. J. P. Beukes, N. F. Dawson and P.G. van Zyl: J. S. Afr. Inst. Min. Metall., 2010, vol. 110, pp. 743–50.

    Google Scholar 

  11. X. Pan: International Conference on Mining, Mineral Processing and Metallurgical Engineering (ICMMME’2013), Johannesburg, South Africa, 2013, pp. 106–10.

  12. 12. C. Ugwuegbu: Innov. Syst. Design Eng., 2012, vol. 3, pp. 48–55.

    Google Scholar 

  13. L. Holappa: Proceedings of The Twelfth International Ferroalloys Congress (INFACON XII), A. Vartiainen, Outotec Oyj, ed., Helsinki, 2010, pp. 1–10.

  14. J. Daavittila, M. Honkaniemi, and P. Jokinen: J. S. Afr. Inst. Min. Metall., 2004, pp. 541–49.

  15. W. Biermann, R.D. Cromarty and N.F. Dawson: J. S. Afr. Inst. Min. Metall., 2012, vol. 112, pp. 301–308.

    Google Scholar 

  16. R.T. Jones: Pyrometallurgy in Southern Africa—List of Southern African Smelters, (Pyrometallurgy, 2015), http://www.pyrometallurgy.co.za/PyroSA/index.htm. Accessed 30 October 2015.

  17. O. Naiker: Proceedings of the The Eleventh International Ferroalloys Congress (INFACON XI), New Delhi, 2007, pp. 112–18.

  18. Y. Otani and K. Ichikawa: The First International Congress of Ferro-alloys (INFACON 74), H. Glen, ed., SAIMM, Johannesburg, 1974, pp 31–37.

  19. E.L.J. Kleynhans, J.P. Beukes, P.G. Van Zyl, P.H.I. Kestens, and J.M. Langa: Miner. Eng., 2012, vol. 34, pp. 55–62, DOI:10.1016/j.mineng.2012.03.021.

  20. G.T.M. Mohale: SEM image processing as an alternative method to determine chromite pre-reduction, MSc Engineering dissertation, Faculty of Engineering, Potchefstroom Campus, North-West University, South Africa. http://dspace.nwu.ac.za/bitstream/handle/10394/15423/Mohale_GTM.pdf?sequence=1&isAllowed=y, 2014. Accessed 2 May 2016.

  21. S.P. du Preez, J.P. Beukes, and P.G. van Zyl: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1002–10, DOI:10.1007/s11663-014-0244-3 .

  22. L. Shoko, J.P. Beukes, C.A. Strydom, B. Larsen and L. Lindstad: Int. J. Miner. Process., 2015, vol. 144, pp. 46–49, DOI:10.1016/j.minpro.2015.09.018.

  23. G. Compan, E. Pizarro and A. Videla: J. S. Afr. Inst. Min. Metall., 2015, vol. 115, pp. 549–556.

    Google Scholar 

  24. 24. M.J. Friedel: Appl. Soft Comput., 2013, vol. 13, pp. 1016–32.

    Article  Google Scholar 

  25. L.L. Nathans, F.L. Oswald and K. Nimon, Pract. Assess., Res. & Eval., 2012, vol. 17, pp. 1–19.

    Google Scholar 

  26. A. Kraha, H. Turner, K. Nimon, L. R. Zientek and R. K. Henson, Front. Psychol., 2012, vol. 3, p. 44.

    Article  Google Scholar 

  27. 27. U. Lorenzo-Seva and P. Ferrando: Behav. Res. Methods, 2011, vol. 43, pp. 1–7.

    Article  Google Scholar 

  28. U. Lorenzo-Seva, P. Ferrando and E. Chico: Behav. Res. Methods, 2010, vol. 42, pp. 29–35.

    Article  Google Scholar 

  29. Y. Wang, L. Wang, and K.C. Chou: J. Min. Metall. Sect. B-Metall., 2015, vol. 51, pp. 15–21, DOI: 10.2298/JMMB130125008W.

  30. C. Takano, A.P. Zambrano, A.E.A. Nogueira, M.B. Mourao and Y. Iguchi: ISIJ Int., 2007, vol. 47, pp. 1585–89.

    Article  Google Scholar 

  31. P. Weber and R.H. Eric: Miner. Eng., 2006, vol. 19, pp. 318–24.

    Article  Google Scholar 

  32. H.V. Duong and R.F. Johnston: Ironmak. Steelmak., 2000, vol. 27, pp. 202–206.

    Article  Google Scholar 

  33. Y.L. Ding and N.A. Warner: Thermochim. Acta, 1997, vol. 292, pp. 85–94.

    Article  Google Scholar 

  34. Y.L. Ding and N.A. Warner, Ironmak. Steelmak., 1997, vol. 24, pp. 283–87.

    Google Scholar 

  35. A. Lekatou and R.D. Walker, Ironmak. Steelmak., 1997, vol. 24, pp. 133–43.

    Google Scholar 

  36. D. Neuschiitz, P. JanBen, G. Friedrich and A. Wiechowski: Proceedings of The Seventh International Ferroalloys Congress, Trondheim, 1995, pp. 371–81.

  37. P. Weber and R.H. Eric: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 987–95.

    Article  Google Scholar 

  38. P. Weber and R.H. Eric: Proceedings of The Sixth International Ferroalloys Congress, SAIMM, Cape Town, 1992, pp. 71–77.

  39. R.C. Nunnington and N.A. Barcza: Proceedings of The Fifth International Ferroalloys Congress, New Orleans, 1989, pp. 55–68.

  40. J.S.J. Van Deventer: Thermochim. Acta, 1988, vol. 127, pp. 25–35.

    Article  Google Scholar 

  41. H.G. Katayama, M. Tokuda and M. Ohtani: ISIJ Int., 1986, vol. 72, pp. 1513–20.

    Google Scholar 

  42. N.F. Dawson and R.I. Edwards: Proceedings of The Fourth International Ferroalloys Congress, Sao Paulo, 1986, pp. 105–113.

  43. N.S. Sundar Murti, V.L. Shah, V.L. Gadgeel and V. Seshadri: Trans. Inst. Min. Metall. C, 1983, vol. 98C, pp. C172–74.

    Google Scholar 

  44. A. Lekatou and R.D. Walker: Ironmak. Steelmak., 1995, vol. 22, pp. 378–92.

    Google Scholar 

  45. A. Lekatou and R.D. Walker: Ironmak. & Steelmak., 1995, vol. 22, pp. 393–404.

    Google Scholar 

  46. E.L.J. Kleynhans, B.W. Neizel, J.P. Beukes, and P.G. Van Zyl: Miner. Eng., 2016, vol. 92, pp. 114–24, DOI: 10.1016/j.mineng.2016.03.005.

  47. M. Riekkola-Vanhanen: Finnish Expert Report on Best Available Techniques in Ferrochromium Production, Finnish Environment Institute, Helsinki, 1999.

    Google Scholar 

  48. K. Jaars, J.P. Beukes, P.G. van Zyl, A.D. Venter, M. Josipovic, J.J. Pienaar, V. Vakkari, H. Aaltonen, H. Laakso, M. Kulmala, P. Tiitta, A. Guenther, H. Hellén, L. Laakso, and H. Hakola: Atmos. Chem. Phys. 2014, vol. 14, pp. 7075–89, DOI:10.5194/acp-14-7075-2014.

  49. D.J. Sheskin: Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed., Chapman and Hall/CRC Press, Boca Raton, 2003, pp. 1193.

    Book  Google Scholar 

  50. G.K. Uyanık and N. Güler: Proced. Soc. Behav. Sci., 2013, vol. 106, pp. 234–40.

    Article  Google Scholar 

  51. J.R. Bunt, J.P. Joubert, and F.B. Waanders: Fuel, 2008, vol. 87, pp. 2849–55, DOI:10.1016/j.fuel.2008.04.002.

  52. B.G. Miller: Coal Energy Systems, Elsevier Academic Press, San Diego, 2005, pp. 239–46.

    Google Scholar 

  53. C.K. Gupta: Chemical Metallurgy: Principles and Practice, Wiley, Weinheim, 2006, pp. 90–100.

    Google Scholar 

  54. P.J. Read, D.A. Reeve, J.H. Walsh and J.E. Rehder: Can. Metall. Q., 1974, vol. 13, pp. 587–95.

    Article  Google Scholar 

  55. O. Ostrovski, A. Jacobs, N. Anacleto and G. Mckenzie: Proceedings of the The Ninth International Ferroalloys Congress (INFACON IX), Quebec City, 2001, pp 138–46.

Download references

Acknowledgments

The financial assistance of the South African National Research Foundation (NRF) towards the studies of ELJ Kleynhans is hereby acknowledged. The South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation of South Africa (Coal Research Chair Grant No. 86880) are also acknowledged. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the NRF. The authors would also like to thank Lion Ferrochrome (Glencore Alloys) for pre-reduction determinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Beukes.

Additional information

Manuscript submitted June 22, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleynhans, E.L.J., Beukes, J.P., Van Zyl, P.G. et al. The Effect of Carbonaceous Reductant Selection on Chromite Pre-reduction. Metall Mater Trans B 48, 827–840 (2017). https://doi.org/10.1007/s11663-016-0878-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0878-4

Keywords

Navigation