Skip to main content
Log in

Thermodynamics of Phosphorus in Solvent Refining of Silicon Using Ferrosilicon Alloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The thermodynamics of phosphorus distribution between solid silicon and iron-silicon melt was studied to examine the degree of phosphorus removal from silicon by solvent refining with ferrosilicon alloys. The experiments were performed on silicon-iron-phosphorus alloys with ~80 wt pct silicon and ~20 wt pct iron. A phosphorus distribution coefficient, which is defined as the ratio of the mole fraction of phosphorus in solid to that of liquid is as follows: 0.22 ± 0.02 [1583 K (1310 °C)], 0.29 ± 0.02 [1533 K (1260 °C)], and 0.33 ± 0.02 [1483 K (1210 °C)]. The corresponding removal percentages of phosphorus were 86 pct [1583 K (1310 °C)], 75 pct [1533 K (1260 °C)], and 67 pct [1483 K (1210 °C)]. The average phosphorus content of the refined silicon in the current process would be more than two times less than that of the conventional solidification refining techniques. The values of interaction coefficient of phosphorus on iron \( (\varepsilon_{\text{Fe}}^{P} ) \) at different temperatures were obtained as −3460 ± 155 [1583 K (1310 °C)], −3595 ± 159 [1533 K (1260 °C)], and −3694 ± 119 [1483 K (1210 °C)]. The self-interaction parameters of phosphorus \( \left( {\varepsilon_{P}^{P} } \right) \)at different temperatures are as follows: 68 ± 4 [1583 K (1310 °C)], 78 ± 10 [1533 K (1260 °C)], and 103 ± 19 [(1483 K 1210 °C)]. The calculated values for the distribution coefficients of phosphorus at infinite dilution are 0.22 ± 0.00 [1583 K (1310 °C)], 0.30 ± 0.00 [1533 K (1260 °C)], and 0.34 ± 0.00 [1483 K (1210 °C)]. Considering the solid (red phosphorus) standard state for solid silicon, the activity coefficient of phosphorus in solid silicon is estimated as \( {{ln\gamma }}_{\text{P \, in \, solid \, Si}}^{^\circ } = - 17395\left( {\frac{1}{\text{T}}} \right) + 10 \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Yoshikawa and K. Morita: Sci. Technol. Adv. Mater., 2003, vol. 4, pp. 531–537.

    Article  Google Scholar 

  2. T. Yoshikawa and K. Morita: Metall. Mater. Trans. B, 2005, vol. 36, pp. 731–36.

    Article  Google Scholar 

  3. T. Yoshikawa and K. Morita: EPD Congress, 2005, pp. 549–58.

  4. T. Yoshikawa and K. Morita: J. Cryst. Growth, 2009, vol. 311, pp. 776–79.

    Article  Google Scholar 

  5. T. Yoshikawa and K. Morita: JOM, 2012, vol. 64, no. 8, pp. 946–51.

    Article  Google Scholar 

  6. K. Morita and T. Yoshikawa: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, no. 3, pp. 685–90.

    Article  Google Scholar 

  7. B. Bathey and M.C. Cretella: J. Mater. Sci., 1982, vol. 17, pp. 3077–96.

    Article  Google Scholar 

  8. I. Obinata and N. Komatsu: Sci. Rep. RITU, 1957, vol. A-9, pp. 118–30.

  9. J.L. Gumaste, B.C. Mohanty, R.K. Galgali, U. Syamaprasad, B.B. Nayak, S.K. Singh, and P.K. Jena: Sol. Energy Mater. Sol. Cells, 1987, vol. 16, pp. 289–96.

    Article  Google Scholar 

  10. K. Morita and T. Miki: Intermetallics, 2003, vol. 11, pp. 1111–17.

    Article  Google Scholar 

  11. J. Juneja and T. Mukherjee: Hydrometallurgy, 1986, vol. 16, no. 1, pp. 69–75.

    Article  Google Scholar 

  12. A.M. Mitrainovic and T.A. Utigard: Silicon, 2009, vol. 1, no. 4, pp. 239–48.

    Article  Google Scholar 

  13. A.M. Mitrainovic and T.A. Utigard: Metall. Mater. Trans. B, 2012, vol. 43, no. 2, pp. 379–87.

    Article  Google Scholar 

  14. Z. Yin, A. Oliazadeh, S. Esfahani, M.D. Johnston, and M. Barati: Can. Metall. Q., 2011, vol. 50, no. 2, pp. 166–72.

    Article  Google Scholar 

  15. E. Bonnier, H. Pastor, and J. Driole: Metallurgie, 1965–1966, vol. 7, pp. 299–317.

  16. J. Driole and E. Bonnier: Metallwiss. Tech., 1971, vol. 25, pp. 2–7.

    Google Scholar 

  17. S. Esfahani and M. Barati: Metall. Mater. Int., 2011, vol. 17, no. 5, pp. 823–29.

    Article  Google Scholar 

  18. S. Esfahani and M. Barati: Metall. Mater. Int., 2011, vol. 17, no. 6, pp. 1009–15.

    Article  Google Scholar 

  19. L.T. Khajavi, K. Morita, T. Yoshikawa, and M. Barati: Metall. Mater. Trans. B, 2015, vol. 46, no. 2, pp. 615–20.

    Article  Google Scholar 

  20. L.T. Khajavi, K. Morita, T. Yoshikawa, and M. Barati: J. Alloys. Compd., 2015, vol. 619, pp. 634–38.

    Article  Google Scholar 

  21. S. Fischler: J. Appl. Phys., 1962, vol. 33, pp. 1615–16.

    Article  Google Scholar 

  22. R. Jaccodine and C. Pearce: Proc. Electrochem. Soc., 1983, pp. 115–19.

  23. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen: Calphad, 2009, vol. 33, pp. 295-311.

    Article  Google Scholar 

  24. E.R. Weber: Appl. Phys. A, 1983, vol. 30, pp. 1–22.

    Article  Google Scholar 

  25. H. Fredriksson and U. Akerlind: Solidification and Crystallization Processing in Metals and Alloys, Wiley, New York, NY, 2012.

    Book  Google Scholar 

  26. L.T. Khajavi and M. Barati: High Temp. Mater. Process., 2012, vol. 31, nos. 4–5, pp. 627–31.

  27. G.W. Toop: Trans. Metall. Soc. AIME, 1965, vol. 242, pp. 850–5.

    Google Scholar 

  28. A. Zaitsev, A. Litvina, and N. Shelkova: High Temp., 2001, vol. 39, pp. 246–51.

    Google Scholar 

  29. A. Zaitsev, Z. Dobrokhotova, A. Litvina, and B.M. Mogutnov: J. Chem. Soc. Faraday Trans., 1995, vol. 91, pp. 703–12.

    Article  Google Scholar 

  30. J. Miettinen: Calphad, 1998, vol. 22, no. 2, pp. 231–56.

    Article  Google Scholar 

Download references

Acknowledgment

This research is partly supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leili Tafaghodi Khajavi.

Additional information

Manuscript submitted May 2, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tafaghodi Khajavi, L., Barati, M. Thermodynamics of Phosphorus in Solvent Refining of Silicon Using Ferrosilicon Alloys. Metall Mater Trans B 48, 268–275 (2017). https://doi.org/10.1007/s11663-016-0804-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0804-9

Keywords

Navigation